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POWER EXPANSIONS OF STRONG CONVERGENCE.

§1. PARTIAL SUMS OF POWER SERIES.

The conventional Taylor Series expansion of a function £(z):-

2(z) = £(o) + Sl ;o £2(0) 2, (1.1)

21

is an abbreviation for the more precise formula:-

£(z) = Tim 8,

N o

where the pclynomials Sk are the partial sums:

= (r) r
- = Z f——-—g-;’-f?——z—- (1.2)

The coefficients of the powers of z are uniocuely specified, being the
same in all the partial sums.

But alternatively we could consider a more flexible sequence of
polynomials:=—

= R (z) =g
o) o
R1(Z) :bO +b1Z (1.3)
2
Rz(z) = o  + 0, g+ 0,32

where the coefficients are chosen such that, for z over a specified
range, Lim Rn(z) w £(2),

n-=oco

Here the coefficients of equal powers of z in different polynomials need
not be the same, gnd the coefficients may be so chosen as to be
suitable for a specified range of z.

Functions may be exvandable into infinite series other than
power series, e.g. as a series of Legendre polynocmials.

OO + 01 P1(Z) + L + Ckpk(z> + ..-0. (10}-{->

The k'th partial sum for this series is
57 01P1(z) * son? Ok:k(z) (1.5)

which could be rearranged as a conventional polvnomial :=-

g, + 8,8+ oia ® akzk (1.6)

Here, if the coefficients c. of the successive partial sums (1.5) are
rigidly fixed, then the coel'ficients a, of the polynomial re-
arrangement (1.6) are flexible, i.e. they differ from polynomial to
polynomiale

0f course, we cannot say that the infinite series actually exists,
but only its limit if the series converges. For instance, thc conventional
manner of writing the Taylor series for e :-
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2 3
X X
e e (1.7)
ia only an abbreviation of the statement:-
. X x2 xn
¢ HISn Sihmt gy Fine ko (1.8)

where €ﬁ~?~0 as n»x, More precisely, we cen avoid any mention

of infinity and say that tx}

e = (1.9)

which gives us much more information about the convergence of the
secuence of partial sums of the Teylor series expansion 17

FUNCTION SPACE

Functions which are quadratically integrable may be represented
as vectors in the Function Space of Hilbert. (N,B. A so-called
Hilbert Space is much more general than a Function Space).

Let the range of the functions under consideration be normalized
as [0,1]. We shall examine the vectors corresponding to the successive
powers of X.

Pirst consider

¢ (=) (2,1)

1}
el

1
M

Next n

f1(x> = x’, Siiiis fn(x) = x {2,2)

Define the "length" of the vector representing a function f(x) as:-

o=

7 = | j';<f<x> ) (2.3)

Then we get:-
2

r 1
V2 = k A @l T O

o1 2 (2.4)
ko . 4
RN RCAODE S —

The cosine of the angle between two functions f(x) and g(x) is
defined as:=-

(£g) =[ o

[¢]

1 e 1 (2.5)
{ [ e %ad T [ g aef?
Thus (V6V1) = f;1x xdx ;;%é__ = Cos 30° (2.6)
1 x;—%——-

Hence the vectors VO and V1 are not orthogonal -~ rather thev sre at a :~

0 e
skew angle of 30 to one another. Similarly, a1l the vectors
corresponding to powers form a skew set.
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Normalize the vectors to unit length, i.e. replace x"

g S

Von+t
As a measure of orthogonality of the vectors we shall take the hyper-
volume of the skew hypercube formed by the normalized vectors,
This has a maximum value of 1 when the vectors are orthogonal,
and equals O when the vectors are linearly dependent. By
elementary gegmetry, we find that the hypervolume v_ of the

skew hypercube based on the first n powers (with thé vectors
normalized to unit length) is given by:-

P 2 " 94 1 1 -
e 1 (v1v22) e (V V) ’S L
' do e
(V?V1) V2~ L 2 % % nl,
Z — ; ! = 1.3.5..«(21’1“'1) 1
- = ; g T i b :
L | e
: = e g
Eﬁ nti. . . 2n+1

(2.7)
The determinant of the notorious Hilbert matrix avpears on the
right of (2.7). Evaluating this, it can be shown that:-

1 1

C ey Sems()

n

Thus v_ decreases very rapidly with n i.e. the set of vectors
representing the powers becomes rapidly more skew as higher
powers are introduced. This suggests that the powers are not
very sultable bases for representing functions.

(2.8)

Weierstrass's Theorem(that anv continuous function over a
finite range can be approximated to agy @es;red accuracy by
a polynomial) shows that the powers x 93X sX seese. form a complete
basis in function space. But the entire set of integer powers is

superfluous, and indeed the following theorem shows how redundant is
the complete set:-

VUNTZ'S THEOREM:- Let an infinite sequence ’\k be such that:
1 S A'1 < Az <0.®.<Ak<0..

Then, a necessary and sufficient condition for the secuence of
functions

At A2 Ak
1,X JX ’ D.."X ’

to be a complete family is that the series

+
1 2

>
>'I i

+.‘0 +.}\-:‘ll{~.+000
be divergent.

By a "complete family" of functions we mean 2 family such that
any continuous function can be represented within ary specified
accuracy as a linear combination of the functionsof that family.
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We observe that the harmonic series
1 Z

1 + % +'? g e ; + e
remains divergent when any finite number of terms is removeq.
Applying Muntz's Theorem we conclude that the sequence 1, x,X ,...
remains a complete set when any finite number of powers are
removed, and even infinite seruences of powers can be removed
and yet leave a complete set. This is in merked contrast to
orthonormal complete sets, from which none can be removed.

Actually, the family of integer powers contains in the highest
degree the properties of non-specification and non-orthogonality.
We shall examine the extent to which any power can be represented
on a2 basis of lower powers:

CHEBYSHEV POLYNOMIALS

Definition: -
Tn(x> = Cos n Arccos x
¢ £3.1)
Tn (x)= Cos nArccos (2x-1)

These families of polynomials were invented by Chebyshev in connection
with the following result, (cf (3.4) and (3.5))which was indeed
the only occasion on which he used the polynomials.

It follows from the definition (3.1) that:

%
T (x) =4 e TS (3.2)
Normalize the polynomials as follows:=
2 * e n-1
o Tn (X) = X +C1X +uoo+0n (3'3)

3 % l
The upper bound of!Tn (x)l in the range [0,1] is clearly
1 (of (3.1). Therefore,

Xn = - C1xn-.1 - oooo"cn - €n (304)
where
e * 2
= LW s ey (3.5)

Thus (over the range [0,1]), ¥ can be approximated by an (n-1) th-order
polynomial with error not greater than,gﬁ_ el x'® can be i
approximated by a 9th-order polynomial 4 with error <2x10 .« , .

It can be shown (from an analysis of the maxima and minims of Tn (X)>
that (3.4) gives the best possible approximation to x by a :
lower order polynomial.

Ecuation (3.4) shows that any high integar power of x is
almost a linear combination of the lower powers. If we are given
any nth-order polynomial p (x) we could use (3.4) to remove the
highest power of x(ignoriﬂ% € _,)giving the best possible approximation
to p_(x) by an (n-1)? th-order polynomial. A second application of
(3.4) would give the best possible approximation by an (n-2) th-
order polynomial to the (x-1) th-order polynomial, and accordingly
this second application will give almost the best possible approximation
to pn(x) by an (n-2)? th--order polynomial. The process may be
co?t%nued, giving polynomials of decreasing degree approximating to
P, lx/. :
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Thus if pn(x) = aoxn+a1xn-1+...+an (3.6)
then: -

p(x) = a__ (=) +7 (x) (3.7)
where

Gped (&) =t s Bt o ile e ) (3.8)
and

%

n () =gn el = 225 T_*(x) (3.9)
After the second step, similarly we get:-—

p(x) = o__(x) + n(x) (3.10)

s “p=1 n=1‘"’ n'n 3

and in general after m steps we have

p(x) = q _ (x) +n(x) £3.12)
where
nm(x) = Chem+1 T:—m+1(x) Faaet ﬁnTn*(x) (3'13)

Finally, after n steps:-
K * *
p(x) = BT (x) + BT (x) +eeet BT " (x) (3.14)

In this menner the polynomial p (x) has been rewritten as a finite
Chebyshev series. TFor any smooth function, the coefficients of the
Chebyshev series expansion decrease very rapidly. In other words

a Chebyshev series in which the terms do not decay rapidly can be
shown to give a highly irregular function. " Thus series of Chebyshev
polynomials tend +to be rapidly convergent.

In a space with a skew basis, such as the power vectors of § 25
the projection of a vector can be very much greater than the length
of the original vector itself e.g. In Fig. 1, the projections OB and
0C of the vector OA onto the directions of OD and OE are each much

longer than OA. / Y 8

SRR e =
Fir 1. g 7 P
: o Fg |
But with an orthonormal basis, each projection has length not greater
than that ofthe original vector.

£
Tt is readily verified that the Chebyshev Polynomisls T (x),
although not themselves orthogonal, become orthogonal when integrated

with respect to the weight function _2 - - L8
x(1-x)’
1 ® %
2 SR S § ) .
o jo ,fl__llf____, dx = g’b S (3.15)
VE(T-x)" < 1 if m=n¥0

/
{ -
k_2 if m=n=0
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In view of this, the Chebyshev polynomials form a complete basis which is

orthonormal (with the appropriate weight function). Trom this
we would expect the coefficients of the Chebyshev expansion of
a function to decrease more rapidly than those for a pgwer series.
(Note that over the range [0,1], both §xnf €1 and ;Tn (xﬂ %% )

A function could be expanded as a Chebyshev series by evaluating
its Taylor series, truncating to give a polynomial and then
replacing each power of x by a Chebyshev expansion. But this
method is inefficient since many terms of the Taylor series mey
be needed, there will generally be heavy cancellation between
the large coefficients of the Chebyshev expansions of the individual
powers of x, and this is largely a numerical process rather than
an analytic process. Accordingly, the following alternative
procedure is of greater interest.

SOLUTION OF DIFFERENTIAL EQUATIONS USING CHEBYSHEV POLYNOMIALS

Most of the common transcendental functions (except theGamma -~
funotion) satisfy linear differential ecuations with coefficients
which are rational functions of X

e yt4y =0, y(o) =1 {5t
define the function y=e_x. Again, the Exponential Integral
f o
at
E = —_—
(§> jf -te (402)
when differentiated gives
b =4 “1 j-e
b'(é) —--é-é-é—— (L 3)
Putting
1
Y(f) = 566 E(€) and x = Z TS
we get the differential eguation:-
xy' + (14+x)y =1 (4.5)

Representing the solution {hel) and (4e5) as power sewies, we may
solve the ensuing recurrence relations got by equating coefficients so
as to get the formal power series solutions of these cdifferential
eqguaticns.

2 3
(st ) — J = 1"f! + ég = ?} * (4e6)
(1e5) —p ¥ = 1-11gH20x"=31x+ (4e7)

The first power series converges for all x, but the second power
series diverges for all non-zero x. Hovever, we never use an
infinite number of terms. Suppose we take a finite sseries i.e.

s n'th-order polynomial, and attempt to sdjust its ccoefficients

so as to get a solution of the dif:erential ecustionw We find

that we do not have enough parameters at our disposa@l - we get an
over-determinal svstem of linear ecuations in the coef"ficients.

Hence the eouation cannot be satisfied by an ntth or~der polynomial =
but what will happen if we add an ad justable perturba tion term to the
right-hand side of the differential equation itself?
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Let the differential equation be represented as:

Dy = p(x) (L48)

Let pn(x) be an n'th-order polynomial such that:-

Dp_(x) = o(x) + 7% (4+9)

where T is undetermined. Then forD such as in (4e1) and (u.5),
we now have (n+2)coefficients at our disposal and (n+2) relations
between them (including the initial condition). Solving these
for 7 and the coefficients of p (x), we get a polynomial which

is an exact solution of the per%urbed differential ecuation
(4.9). But with a perturbation term of the form Tx, the perturbation
is largely concentrated near the upver end of the range LO1J).
This surgests that it would be advantageous to use instead a
perturbation term of the form T T #(x), in which the perturbation
is distributed much more uniformly throughout the range (o1l
Then the perturbed ecuation to be solved will be of the form:

Dp_6x) = p(x) + 7 T, *(x) (4.10)

Sometimes the following form may'prove to be more suitable:

Dp(x) = plx) + 7 T . %) (4e11)

If these are two degrees of over-determination of the polynomial
coefficient (as generally happens when D is 2 second--order
differential operator), then a suitable perturbation term would

be OTn* e TTn+1*(x). A polynomial solution of a perturbed
differential equation (4.9), (4.10) or (4.11) is in some sense
an approximation to the solution of the original differential
equation.

Let us examine the effect of adding any n'th order polynomial
as a perturbed term of a linear ordinary differential equation.

n
Dy =Y. ¥ Freeot V. X {112

The general solution of this linear equation may be vritten in the

forn
n

o :
y = L y.k Qk(X) (4'13)
k=0

where Qk(x) is the polynomial which is the general solution of
k

DQ, (x) = x (bal)

The order of the polynomial Qk(x) need not necessarily be ke

For the operator of {ist) Ly =yt & y) we find that:
2

0 (x) = (1ot g o (—ﬂkf‘c ()€ k{15
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The tg§m in brackets on the right is the truncated Taylor series
for e . ﬁeplacing v by Qk on the left of (4.1), we get

DQk(x) =X s
For the operator of (4.5) (Dy = xay' + (14x)y), we get (cfe Le7)
: k
o F g .3 ., ks (1)
C%Cﬁc) (1=x+ 20 2°=31x 400 o #(-1)" K'x) )T
(4.16)
for which
k
2 4d _ k(1
(x r -l (1+X)) Negi = 8 il 7TZR ) (4a17)

These may be vritten as

o (x) = 8 () (ot P2
% % K (1.18)
e

respectively where the Sk(x) and the Sk (x) are the appropriate partial sums

Ve shall apply (4..18) and (4.13) to the case where

= * o n n 2 nn
py=r S O S0 46 R AL, % F,H O X
(4.19)
where the coefficients Cin can be evaluated. We get for the first case
n
) F=7) @) () x (2.20)
=0

But in the second case, bearing in mind the constant term on the
right-hand side of {(4.17)

we take the function (~1)k
e (4.21)
g =17 Ceay G &) Te#)? .
.
=0
which is a solution of the perturbe% eouat%on
{ * n+1 2 (1) Cn"’"l )
Dy = T Tn+1(x) - Co ;—0 Ter )kt | (422,

Both in (4.20) and (4.21), the T is to be found by requiring y to
satisfy the initial condition.

Tn classical analysis, a secuence of partial sums of a series may
be replaced by a secuence of averagq;(possibly veighted) of the
partial sums to give a more strongly convergent secuence = this
is the so-called Cesaro summation. The process may be repeated to
give Cesaro sums of 2nd order, 3rd order, ... etc. Examining (4.20)
in this light, we see that (with T suitably adjusted so as to fit
any initial condition) y(x) is = Cesaro sum of the infinite series ’
(1.6), but withia weight factor:(+1)K CF"' k! The series (4.6)is
alreadyconvergent for all x, but this weight factor strongly
emphasises the partial sum for largest k, which is a good approximation
to the true solutions.
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In the case of (4.21) the individual parti=l sums S *(x)
diverge, but (4.21) gives a Cesaro sum with = weight factor
(—1)kC;:: This (k+1)! in the denominator 2ssigns low weight

k+1)!

to the diverging terms of large k, and it can be shown that these
weights are the best possible, in the sense that (4.21) has the lowest
possible maximum error in representing the true solution of the un-
perturbed differential equation (4.5). Thus the convergent partial
runs Sk(x) have been made more rapidly convergent, and the

*
divergent Sk (x) have been made convergent.

More generally, if the rangg 1is [0,x] adjust the T's to the
new range, replacing T (x) vy T, |%|, in which event cﬁ
n

(cf (4.18) must be replaced by EE-— , while (4.13) and (4.18)
o

give
.
A | -k
y () =71) cpoa glx) (4423)
- :
ss the solution of a differential-equation with 2 perturbation term

* IX
T, Bl where T is to be adjusted so as to fit the initial conditions.

If a is/,small then a—k will be very large for large k, sc that the
weight emphasiscs the highcr pertislsuns, This corresponds to the
fact that both a Tavlor series solution and an asymptotic expansion are
good near the origin. Conversely, if a is large the divergence-producing
character of the Q (x) is counteracted, so that*the so-called
"romethod" (i.e. adding a perturbation term 7 T gzc_%) is likely

a

to give better convergence over a large range than the Taylor series
expansions

Toanczod T-method can be shown to give results identical with
Clenshaw's procedure for finding solutions of ordinary differential
equations directly in the form of series of Chebyshev polynonials.

ESTTMATION OF ERROR OF 7-METHOD

The errors of the Taylor series method and of the T-method may be
estimated 2 priori as follows:~- '

The remainder after n terms of a Taylor series expansion of f(x)
whose~(n+1)'st derivative exists, (where x is in the range O to 1)

may be expressed as
/ - (n+2)(ex)xn+1
Mp(x) = (5.1)
(n+1)!
where 6 is somewhere in the range
0 <651 (5.2)

Alternatively, the remainde§ may be expressed in Lagrange's form:=
i f 2(01) () 6(x-€) a8
(%) = °r ~ (5.3)
(n+1)! jo G(x-€).a¢
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where G is an auxiliary Green's Function with G>0 everywhere

If we expand f(x)1in a series of Chebyshev polynomials, it turns

out; that o[ £ (e). 6(x,8).a
n(x) = f°

s $ (5.4)
n+1
4L (n+1)! jG(x,f).df
)
where G(x,€) is some other Greers function and
Q(x,§)>0 for 211 x and §. Applying the
Mean Value Theorem to (5.4), we get:-
n(x) = f ¢x 5.5
An+1(n+1)! (¢x) (5.5)
where ¢ is somewhere in the range
ot (5.6)

Comparing (5.5) with (5.1), we see that the error bounds for
the Taylor series are better then those for the Chebyshev series
when 0<x<<1; but that over the entire range 0 to 1 the bounds (5.5)
for the truncation error of the Chebyshev series are very much smaller
than those for the Taylor series expansion, in view of the additional

factor 2. in (5.5).
n+1

L

The Green's Function G(X,é) in the Chebyshev remainder term
(5.4) has the follewing general form for all xi=-

as [
]
g /

i X -

IA: (_jt 5 Lf‘
. ( n+ 1 ) : & ; | 4 \
Hence if £ (E) is well=behaveg, it follows from (5.4) thet

=1, Therefore,

o) 2 (n-H 1 c
i) 5 g ¥ I e

Comparing (5.7) and (5.1) with x= %, we see that if f(n+1)(x) is
well-behgved the error bound for a truncated Chebyshev series is
roughlyo,m that for the truncated Taylor series, The error for
the Taylor series is concentraigd near the upper end of the range
0 to 1 (in view of the term <& in (5.1), but the error for the
Bhebyschev series is distributed much more evenly over the entire
range, within greatly reduced bounds.

ina.gz,

Converting (5.7) to a range [o a], we get approximately,

n+1 (n+1) Gi)
n<x>zj;':+, LL 2) |

(n+1)!

(5.8)

How may the higher derivatives of £(x) be estimated? Let f(x) be
defined bv the linear differential equation:-

Df(x) = p(x) (5.9)

with sppropriate boundary conditions, whereas we solve a perturbed
equationt=
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Dy*(x) = p(x) = 1T, *(x) (5.10)
with the same boundarv condition. Defining

n(x) = £(x) -y () (5.11)
we see that n(x) satisfies the inhomogeneous differential
equation:—~

n(x) = = 1Ty, (=) (5.12)

with homogeneous boundary conditions. Hence we can use a Green's
Function, to give:-

nte) = 7 [ 3,700 olr,00.06 (5.13)

(o]

§n(x> £ 7 j1G(x,§).d€ (5.14)

Therefore if an upper bound p is known for G, we have
in(x){ <7p (5.15)
N.B. p is independent of the order n.

The inequality (5.15) gives a gery pessimistic estinate of 7,
since G is of fixed sign whilst Tn+1 (&) oscilly tes rapidly.
Moreover it is & posteriori estimate, since T is not known initially
and is found by fitting the general polynomial solution of the
perturbed equation (5.10) to the boundary conditions.

Another approach to the problem of estimating the errors of the
T-nethod is as follows

Equations (5.12) and (3.1) eive:-
DTI(X) . TTI.,_H*(X) = = TCos (n+1)9 =-TRei(n+1)6
(5.16)

Although the right hand side is a rapidly fluctuating function of x
(especially near x =0 and x=1), it varies smoothly with respect to 0.
This suggests that

i(n+1 )9

n(x) = ™8(x) e (5.17)

where B(x) varies fairly smoothly with x, i.e. most of the
fluctuation of M is catered for by the term ei(n+1)9 Hence

in the operator D we may neglect %;— B(x) in comparison with

B(x), and as a result (5.16) reduces a purely algebraic equation for
B(x). Solving this, we may estimate the maximum possible error 7 .

This is known as the "method of forced oscillations"
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STNGULAR CONDITIONS

PIFFALLS TN THE 7-METHOD

Consider again the exponential integral:-

E(X) ::rg'i‘-‘.f_— (6.1)
te
%

On the negative branch, instead of (4.5) we get:-

—xzy‘ + y(1-x) =1 . (6.2)
Applying the T-method, we seek a polynomial solution of the
perturbed equation:- s

x°y"! +y*(1“x>= 1 + rTn*(x) (6.3)
We have the asymptotic expansion

6 1! ot . 3¢
F(X) = E(-x) . (1+ = + = * < oeias)

(6.4)

The T-method error estimate appears to fail. Indeed, if Y(x) is the
solution of the homogeneous equationy we get the general solution

y(x) =y (x) + c¥(x) (6uks)
where ye(x) is a Particular Integral, and

¥(x) =L e ¥ (6.5)

in the positive braneh, but
-1
¥(x) = -:; e ¥ (6.6)

in the negative branch. In the positive branch, Y(x)yoe as

x 30, so that autcmatically C= 0, since y(o) is finite. In the

negative branch as x 30, we have Y36, Y'a30m Y"20, Y"'20,....61C

Therefore the Complementary Function Y(x) eannot be excluded by
anv boundary condition at x=0, and a boundary condition for some

positive x (e.g. X=+w) is required for fixing the solution of

(6.2) uniquely., Thus the T -method cannot be applied with boundary
conditions at x=0, :

Similar troubles can arise when the T-method is applied to
Bessel's differential equation, and to any case vhere the homogeneous
equation has a nonzero solution. However, if it is known before-
hand that the solution of the differential egquation has such features,
then the T-method can be adapted tc such problems.

Another pitfall in the T-method is illustrated by the following
example:—-

Let y=x (6.1
where p is fractional. Then
e
: 2 (6.8)

e xy' - Dy = O,y(o) =0 (6.9)
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The T-method gives disappointing resultg in the range O to 1. But
x=0 is a singularity of the solution y=Xp, so that we can hardly
expect good results over a range which includes the origin. Hence,
instead of taking the renge [01] and fixing y at x=0, we shall

£ix it at x=1. Shifting the origin, y is rewritten as (1-x) over
a range [0a] where @<1, in order to avoid t e singularity. As in
(4e21) we now get the following approximation to (1;X)Pz—

C
y=7r 2;1%__ Qe (x) (6.10)

Now put x = «, i.e. the very end of the range [0 a]. Then (6.10)
becomes:-

(1=a)f = 7 ZE};__ Qk(a) (6.11)

Thus we get & rational approximation to (1~x)p. This forms the

best Chebyshev-type approximation possible to (1-a)P, The error
worsens as a31. In general, if a function has any singularity th n a
Chebyshev expansion over a range including that singularity will

give poor results.

LEGENDRE POLYNOMIAL EXPANSION

Over the entire range of the argument, Chebsyhev polynomial |
perturbations minimize the maximum error in the solution of the
perturted equation. But Lanczos has made the interesting discovery
that if we are interested in the solution at only one point x=0, then
a solution over the range [0a] with the equation perturbed by a
Legendre polynomial gives the best possible result at the one
point x=a. Indeed it can give accuracy at x=« much higher than
the Chebyshev techniques, which minimizes the maximum error over the
entire range [oa]. This superiority holds only if there is no
singularity within the range, SO that it does not hold for, say,
the exponential integral including the origine

In order to see only this is so, consider the perturbed equation:

Dy{x) = T, Prar*(x) (7.1)

rather than ani1(x). To solve this, the Cﬁ of (4.21) could be

%*
taken as the coefficients of the Legendre polynomial P_. ., rather
than”of Tn+1*(x). We know that !T1!> ‘TA since Chebysheév polynomials

minimise the maximum error in the range.

Usine the Green's Function, we get:

aG) = 7, [ B0 6lx0).a6 (7.2)

Now G has a discontinuity at x=§, so that G camot be approximated bv p
powers of x ard €, But at the end point x =1, G(1,§) is continuous
throughout the entire range § = to1l.
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Therefore G(1,§) can be well approximated by powers, according to
Weierstrass' Theorem. Expand G(1,§) in a series of Legendre
polynomialse

6(1,8) =) CPT(&) + Tt (&) (7.3)

1 B

k=0

where the remsinder term T'n' is generally verv small. Putting x=1
in (7.2) and using (7.3), e get:

n(1) =7, [ : P:H(é). G(1,€). aé

1

1l

% /01 PZ+'(§) (1:2 Ckplt<é) =& rigiil) ) aé

1

n
T £ E % 1*
T1kéb jOCkPn+1(§)'Pk(§>'d§ * e B j; Pn+1(§).n'(§).d§

- o | 1Pn+1(€).n'(§). a (7.4)

since the Legendre polwvnomi~ls are -orthogonal over th'e range [011

Thws the error n(1) at the end of the range is of the order

T, 7', which is generally of a higher order of smallness than T,
itself. The requisite orthogonality properties (of polynomials
with unit weight over the range [01 ) are possessed omnly by the
Legendre polynomials, so that the perturbation (7.1) is indeed the
best possible for minimising the error at the end of the range.

ANALYSTS OF EQUIDISTANT DATA
§8 FOURIER ANALYSIS

Here we shall consider values of x over the range [«1 1] . Ir we take

0 = Arcos x (8.1)

then any function f(x) is a periodic even function f(Cos 6) of the
argument 6, and if f(x) is en analytic function of x then f(Cosf)

is an analytic function of 6. An exnansion of f(x) into a series of
Chebyshev polynomials T (x) is exactly equivalent to a Fourier series
expansion of f(Cosf). 2

Therefore if f(x) is analytic the coeffiicients of both expansions will
decrease very rapidly.

Thus we can anply the highly developed theory of Fourier series
to Chebyshev series, and vice versa, In particular, any function
f(x) which is continuous over the range [<1 1] is a continuous
periodic even function of 6, and thus

f(Cosb) = % 5, B Cosf + aZCos 204 - . (8.1a)

o}

f(x) = a, o+ a1T1(x) + aaTz(x) s sy (8.1b)

are convergent expansions (With, moreover, rapidly decreasing
coefficients), whether or not a Taylor series expansion converges.
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The coefficients could be found by the standard integration
process based on the orthogonality integral properties, but
such integrations will generally be exceedingly difficult to
perform. But if the data are given at ecuidistant values of 0,
then we could exploit the discrete orthogonality summation
properties of cosines to £ind the coefficients of a finite Fourier
series fitting at the equidistant points. It can be shown that
the error of the finite Fourier series is never more than twice
that resulting from using twice the number of terms with exact
coefficients (f.c. found by integration, rather than by summation;.

But ecquidistant 6 do not correspond to equidistant x.
Indeed if 6 =km  (k=0,1,2, «..,n) then x, = Cos X7 . vhich
n n
are inconveniently spaced values of X. If we are interested in fitting
a polynomial to a function which can be evaluated for any argument

(e.g by a subroutine) then it is convenient to use % = Cos XT_
n

and to fit a finite Fourier sum, which gives directly 2 finite Chebyshev
series. There is no need to rearrange a Chebyshev series into

a standard polynomial - the finite Chebyshev series may most
conveniently be evaluated by a form of "nested" multiplication for

any value of its argument (cf. Clenshew).

But usually we are given the values of a function at (n+1)
equidistant values of x, as in an ordinary table. It would be
possible to evaluate the function at the Chebyshev points by
applying some interpolation procedure, but it is generally preferable
to fit curves by technicues such as those in the following section.

FITTING CURVES TO PERIODIC FUNCTIONS

Consider any function & (x) whose k'th derivative exists.
Write the derivatives of Gk(x$ in the following unorthodix
manner:-

&' (x) = Gy (x) :
& %) (9.1)

G (X} =G g =
er(x)  =6,(x) =6(x)

Let f(x) be another function whose (k+1)'th derivatiwe exists -
we shall write its derivatives in the orthodox manner as

£4{z), £, 5oes f(%;;?

Integrating by parts, we get:

jb f,(k+1)(§) Gk(x—f).dg = jék(x“f).df(k)

(€)

= [f(k>(§).t}(x-<s)]b = ]f(k)(é).dek(x-é)
= [f(k)(é).c;(x-f) ]Z * f bf(k)(«.f). Gy q (x=€).a¢

a

(9.2)
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Repeating this process k times, we get the following important
formula for Repeated Integration by Parts:-

b
[ oo st = - 00,60 ¢ o0 o)
Joet £ <§)G<x-¢>]

b (k1)
N GRS RY. (9.3)
a
As a special case, tgke b=X, and G (t) = k" Then G(t)=1,
G (t) =1t, G (t) —-—T— seens 61Ce Applylng (9. 3) we get
(kz N X-g *
a) oy

f(x)=f(a) = £'(a) (X-a) ¢...+F =

X (ks (X~f)k
+ [f(k )(5) S gk (9.4)

giving the Taylor series expansion with remainder term.

Next, define Gk(t) by tge following series exvansion:-

eimﬂt
Gk(t)': Re -f——SE+1 (9.5)
et
Differentiating (9.5) k_times, , e see that for 0<rsk,
l"V
¢ (t) =Re ¥ ——--T. .
= é51 (imﬂ) s (9.6}
i.e. the set of functions Gr(t) do satisfy ecuation (9.1).
In particular ) s B
" . oo elmrt e Sinmmt
G(t) = Re ) ~ g7 = ) —— (9.7)
n=1 m=1

We observe that each Gr(t) is periodic, with period 2, i.e.
Gr(t+2) = Gr(r) for all t and for all r. In particular Gf(-1) =
Gr(1). The Gf are alternatively odd and even functions of t.
Define g .
B, () = = 26 (+~1) (9.8)
Then each Br(t) is likewise periodic, (0sr<k), with period 2.
Examining forrmula (9.7) for G(t), ~e recognise the Fourier

expansion for the following saw-tooth wave, shown here over a
fundsmental period from -1 to +1:=



R q e

Gty % "f/\r;\

Accordingly, B1(t) is also a sawtooth wave, with the following
strudture:- N 81( t)

P s -
s

s g

i
N
O

{:‘(é/ﬁ

\
o

ice. B,(t) =t for -1<t<1,
31(1) =0 (9.9)
B (t+2) = B (t)

Comparing (9.8) and (9.5) we see th-t, for each ri-
B (t) =B, (%) (9.10)

Now, B (t) is a periodic peicerise-polvnomizl curve of degree 1, and
hence 1c¢ follows from (9.10) that each Br(t\ is a periodic piecewise-
polynomial of degree r.

Since each Br+1(t) is ver-odic, it follows from (9.10) that,
for each r:

b

[;iBr(t)dt=O (9.11)

Consider B (t), which is a periodic function equalling a 2nd-order
polynomial within the range -1 to 1. Integrating (9.9) we get,
for —~1<t<1;
42
Ba(t) = w4k : (9.12)

The constant of integration k may be evaluated by integrating (9.12)

and applying (9,11) :=
1

1 2 3
0= f (§T+k).dt = [%r- + kt] = % + 3 o
- > : =
: (9.13)

Hence k = :%T and =
+ 1
Bé(t) s > 59l o (9.14)

Continuing in this manner, we find that, within the range
-1<t<13



i
e
Q0

i

B (t) = t
-
B (‘t) B e
; ii 6 (9.15)
3{2) o =l
3 3 6
.ti.- ta 7
B {t) ‘= o &
(%) % et T e .

These happen to be the Bernouilli polynomials. (Somewhat different
polynomials are also defined as Berncuilli pOlJﬂLIl“lS)

Putting a=-1, b=1 in (9 3) and taking G (t) as 1n (9 5) the
lef't-hand 51de of (9. %) becomes

fﬂ:f’(é). G(x=¢€).d¢ = { | +j

ot x+0

b e(8).0x-0) a6

[T (e [abxe0) et + [eey [4dx-0)].

X+0

il

3 [ e @no.ae sy [ oo -1 [ 2100

-5 [e-e)ua(@) + 3 [2(O1., 4 [2(&)],

- )21+ [ £(6).alx—8)s £(x)-EE(-1)-22(1)
- -bxe1)2(1) + Her)e(-)4 [ 2(6).aé+ 2()-deiE(1)

=l £(x) - ff(g) aé --[f(1)-f(-1)] (9.16)

Bearing in mind that Gr(x~1)=Gr(x+1), the right-hand side of
(9.3) becomes:

(k) I' k+1)
~[£1(€)G (=€) + £"(£)6,(x=€)+euot £77(£).6 (r—é)] f ()6, (x~€).d¢
= - G1(x—-1)[f"(1}—f'(-1)]—Gz(x—‘I)[f"(‘l)- f"(-—‘l)]-...-Gk(x-‘l)[f(k)(‘l)—f‘(kz-—‘i)_;

+ [ | f(k“)(e).r}k(x-&).dé

ok

- 13 () [ (1) (1) + 38, () [en(1)=e" (=) Junutdm, , () [EUE) (1)) ()]

+ f f(k+1)(§).(}k(x-€).d§ 19.47)

-
Bouating (9 16) to (9. 17), we get the following remarkable formula:i-

f‘(x)-%f £(£).a8 =[e(1)-e(-1)1B_(x) +3le* (1)=£1(~1)] B, (x)+..

() (x)
e (- (1) I, (x)
1
e [ 200 (x-8) a8 (9.18)
-1
Note thaflthé'Br x) are universal polynomials, independent of f(x).
We recall that:- 00 imwr(x=€)
G, (x=€)= Re E e—-—E?;.T (9.19)
k (imm)

m=1
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1

Replace £(x) by £(x) +3 j (€).d€, so that the left-hand side of
Expand both sides of (9.18) a8 Fourier

=1
(9.18) becomes simply f(x).
series, truncating the Fourier series in each case after the terms

sn Sin n7x and Cos n7X, where n is sny integer. Denote the
truncated Fourier series for f(x),Br(x\ and Gk(x—é) by f (x),

i , 3K
Br(x) and Gk(x—é) respectively. Subtracting the - truncatsd Fourier
series from both sides of (9.18), we get '
* >, ¢ %
r(x)-£ (x) = B_[B, (x)-B, (x)]+8,18,(x)-B, (x)1+.. 048, [, (x)-B,, (x)]

e [0 (e) oy (rm) iy (x-0) 108 (9.20)

where

5 = H£F) () - ) ()] (9.21)

But equation (9.19) shows that
® " " imm(x=€)

s % e
6, (x-§)—G, (=€) = Re )~ (9.22)
and hence we get the following important formula for the

+runcation error:-—

£(x)-£" (x)= B [B (x)-B *(x)]+...+ B [B, (x)-B, ,,(x)]

?}-\ eimﬂx+ f 1f(k+1 ) (é)e-imﬂ'édg
= (1) 7o (9.23)

+ Re

m=n-+1
Thus we have expressed the error of the truncated Fourier series for

f(x} in terms of known functions (viz:
series for the Bernouillil polynmmials), together with a remainder

term. Equation (9,23) shows that this remainder term decreases
verv rapidlv as k ani/or n are increased.

Now, if the f'unction f(x) (whose (k+1)st derivative has been

assumed to*ggist) is actually periodic, then each ?r=0 (cf.(9.21)).
f the Fourier

Thus for a truly preriodic function the truncetion error O
series (taken.agiﬂar as Sin n™ and Cos nTx) equals:

e . 1 -
| s f ket )(6) , o im™qs (9.24)
mﬂn+ﬂ'_7__-E+1 sk

Egquation (9.2L.) shows tha%k+f?r a periodic flunctlon £(x) which is
(x) to exist evervrvhere, the truncation

sufficiently smooth for f
error becomes very small if k is large, and it decreases rapidly

a3 n is increased for fixed k.

-3 MmTe
Note that the factor e o in the integrand of (9.21)
fluctuates rapidly about 1its zero mean value, so that f(k+1)(§)e—imﬂ§
1

tends to gzero as m =3 (Fubini's Theoren)

+the truncation errors of the Fourier
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FITTING CURVES TO APERIODIC FUNCTIONS.

+
it f(x) is sufficiently smooth for f(k 1)(x) to exist for
-1 <x<1 but f(x) is not periodic, then a highly accurate Fouriler
expansion of f(x) within the range x=-1 to 1 can be obtained by

using (9.23).

£(x) = £ (x) +30[51(K)"B1*(X)]+"'+'ﬁkIBk+1(x)"B;+1(x)]{Rk,n

(10.1)

where R, is the right-hand side of (9.24). In this manner, by
adding the correction terms consisting of the truncation errors

of Fourier expanfi?ns of(E?rnouilli polynomials (with coefficients
equation to % g (1)-f '(~1)]);fﬁx) car be expressed with an
accuracy as high as though it were strictly periodic. This technicue
requires that the derivatives of ¥ be known at the ends of the range.

Similar techniocues can be applied when Fourier interpolstion 1s
used, rather than truncation of a Fourier series.

When fitting a Fourier curve.tQ an aperiodic function, we always
know the value of " iy
Nnow e vaiue O ,:BO (:'jg?[f(“”—f(-'z \”'] - vhether or not we know any
derivatives at the ends of the range. Therefore if we subtract the
linear term ﬁox f'rom f(x} we shall get a function for whioh.ﬁ0 becomes

zero, i.e. a function which can be regarded as being periodic without

any discontinuities at x=*1, Provided that £'(x) exists for -1<x<1, this
produces results eouivalent to (ﬁ0.1) with k=0 rather than the '
truncation term for a discontinuous function

: 1 .
£(x)=f" (x) = Re ?' g f o(g). 0 0% 4 (10.2)
- 1

(-

m=n-+1

(cf. (9,2u) withﬂk+1ﬂ0). Thus the removal of the linear term produces
o truncation term Ro,_, which decrecases much more rapidly (as n
increases) than does %he truncation term (10.2)

Again, when performing a Fourier analysis of an aperiodic curve
the convergence of the Fourier series may be improved considerably
by taking the range of x as [0,1]: then extending the function over

the range [—1,0] so that we have an odd function over the range
E4,1], and regarding this as belng one period of an odd periodic

function g(x) 2 - 8(2:)

=
L

é‘/‘g(i) "‘u(_j 5

R | ' | = 5

g -3 = ¥ 3
1 Ha T:SE. O’g j'{:()

tyuvnmﬁghtk = —

basic Vacked of £(x)
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The Fourier series for g(x) (which coincides with f(x) for
0<x<1) contains sine terms only, and all the Bs,.,, are zero.

At x=0, f(x) and all of its even derivatives are discontinuous, but all
odd derivatives are continuouse.

Bearing in mind the extra jump at x=0, it can be shown
that:-

g(x) = £ (x)+(1)2 (x)-£(0) &, (1=x)+ £"(1)2,(x)-£"(0)2,(1-x)
e £ (1) 8 (0 ()2 (1) Re ) £(v1)(g), ominmqg

(10.3)

where @ (x) 18 the truncation error of the Fourier series for the
Bernoui%li polynomial: -

@k(X) = Bk(x)-B;(x) (10.4.)

It can be shown that, for 0<x<1,

0,2 < L k

m

: f (10.5)

X 5 4
2T n }

j@s(X)

In (10.3) the terms £(1) @1(x) and f(o)@1(1-x)*are always known,
and (10.5) shows that the truncation error of f‘(x)+f(1)@1(x)-
f(O)@1(1—x) is 0 (1 ). If £"(0) and £"(1) are known or can be

[

ol
estimated, then the inclusion of the corresponding terms reduces

the truncation error to O .L"\.
=y

Even more rapidly convergent Fourier series can be produced if
we first subtract a linear term from f£(x), such that the modified
£(x) equals zero at x=0 and x=l. Then reflecting in the origin,
we get a basic period of a continuous odd periodic function, which
has a rapidly convergent Fourier exvansion.

—~

811 4 INDERINITE INTEGRATION

Let a curve be fitted to f(x), e.g. & Chebyshev series, or 2
Fourier series which may include polynomial terms 2s 1in (10.1). Then
we mayv integrate or differentiate this curve for approximating to. the
integrals or derivatives of f(x). Of course, the derivatives will
be more uncertain than the integrals.

Manv numerical technirues are available for fiinding definite
integrals (and derivatives) of £(x) or of the fitted curve, but difficulties
car arise if an indefinite integral is recuired. For exanple, if

Simpson's rule is used for producing a table of the indefinite integral,
it will produce numerical integrals only for every second step.

But if a curve has been fitted to f(x) (e.g; Chebyshev or Fourier ser-
jes) then this curw mev be differentiated and integrated analytically,
enabling the integrals or derivatives to be found at any point of
the range by evaluating analytic expressions. Such technicues
mey be called "global" integration (or differentiation), since they
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utilise ail‘the values at qir disposal, in contrast to "local" integration
by, say, the. trapezoidal rule or Simpson's rule. In

consequence of this, much higher accuracy can be attained by

global integration than by comparable local integration technicues.

LARGE-SCATE LINEAR SYSTENS

Tnsufficient time remained by this stage for the application of
Chebyshev polynomials to the solution of linear equations to e
discussed (cf. Golub and Varga). However, Professor Lanczos

advocated that the solution of any system of linear algebraic
equations ;

draf (12.1)

where A may be a square or a rectangular matrix, should proceed
(unless A is an Hermitian matrix) by replacing (12.1) bv the
augmented set of equations:

b (12.2)

This produces a set of eauations with an Hermitien matrix, and
is equivalent to analvsing = linear vector space in terms of both
covariant and contravariant coordinates.

Most iterative procedures for solving linear ecuations can be
adapted to the augmented equations (12.2) without actually
generating the augmented matrix, but working throughout with A

itself, :

For a fuller account of augmented matrices (including the
extension of the concept of eigenvalues and eigenvectors to matrices
which are not square), consult Professor Lanczos' paper in the

Proceedings of the Fifth International Mathematical Congress
at Edinburgh, and his book on "Linear Differential Operators".
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