
'ENGLISH ELECTRIC'

DEOCE

LECTURE NOTES

I - 30

D A T A PR O C ES SIN G A N D C O N T R O L S Y S T E M S D IV IS IO N
T H E EN G LISH E L E C T R IC C O . L T D .
K ID S G R O V E , S T O K E -O N -T R E N T .

A 6 /'HV'V

iiCtT U*^i

lk IIAJ
f\Jr

b f u / & x

(2NI S H - *

2i 1

& * -
f f e / ^ ^ £ > i f r c λ ^ . Λ * /w .k W < <

tv, & v w x a 1 - k o ^ iV/ 4 > o t ^

k f Vt?!v_ & v

& l ·

7

-1-

Leobure 1.
2.

3.

k- ' 4.
5.
6.
7.
8.
9.
9C.

r - j

10.
1 1 .
12.
13.
14.
15.

?t 16.
i ' 17.
s·':. -:4 * ’ 18.

19.
l· ■■ * •OCM

, 2 1.
21C.

•CMCM

f .' s1 22C.

eCM

23C.
24.
25.
25C.
26.
26C.%
27
29.

DEUCE PROGRAMMING COURSE,
INDEX OF LECTURES.

Binary number systems.
Basic rules of transfer.
Sources 27-31·
Destinations 25-26.
Sources 0, 22-26.
Destinations 22-24, 27-29.
Multiplication.
Division.
Deuce instructions and coding.
Instruction modification and destination 0. .
The Magnetic Drum store.
Input and Output - field working.
Input and Output - 60 column working.
Programme input.
Fetch and store routines.
Subroutines.
Peripheral Equipment.
Automatic counting by 'Joe1 digits.
Automatic instruction modification.
Programme testing.
Control panel.
Special programming techniques.
Organisation of large programmes.
Deuce library services.
Input and Output - 64 coluna working.
Deuce programming for Data Processing Application.
Subroutines for character working.
Interpretive routines.
General considerations of sorting.
Deuce Alphacode.
Data Processing - preliminary systems studies.
Magnetic tape storage.
G. I.P. and Linear Algebra.
Principles of Commercial Programming.
Fixed point or Floating point? Advantages of each.
Magnetic tape file updating.
STAC.
Extra D.L's. on Mk IIA machine.
Destination triggers.
Deuce Programming Practice - graded exeroises for students to programme
and test on the machine during the oourse. Students should aim to
complete exercises 1, 2, 3, or 1 and 4, depending on the type of work
they intend to do.

DPCS2

_ΙΰΧβΜΜΜ ■T ■ a s...

1

-1.01
LECTURE 1

1.1 GENERAL INTRODUCTION.
The DEUCE is a stored programme digital computer capable of carrying out at high

speed the operations of arithmetic, logic and information transfer. In common with other
high speed computers, the DEUCE can only perform these operations nvhen it is instructed
to do so.

The first task in getting any useful work out of a computer is the presentation of
the problem to the machine in a form and language which it can understand. A problem may
take many forms. It may be the evaluation of an expression written in mathematical symbols,
in which case the machine is used as a calculator. On the other hand the problem may be
a commercial activity such as the control of stock or the preparation of invoices. It is
customary to separate these two main types of problem into scientific and commercial
applications. In the former case the data may be the result of measurements in an experiment
or the coefficients of equations arising in a design calculation. In the latter case the
data may be the quantity of some commodity held in a warehouse or the outstanding debt on

^ the ledger account of a customer. In both cases the machine may be said to act as a
data-processor, for data is "something you are given" and processing means "doing something
with it" · Whatever the type of problem, it can only be successfully handled by a computer
if it is first subjected to three necessary operations.

These are: (a) Problem Analysis.
(b) Programming.
(o) Coding.

The definition given to analysis is common to all computers. It means thinking about the
problem and formulating it in such a way that the objective is clearly known and specified.
In mathematical and technical work this formulation frequently involves a formula and the
objective is clearly defined. In commercial data processing no such formula may be available
=and the problem must be specified as a series of statements outlining the problem
requirements. For either type of problem it is essential that it shall be understood, for
if it i3 not, then there is no hope of enlisting the aid of a computer in its solution.

) Here we have the first axiom of computer operation, that no one can do on a computer what
he does not know how to do by other means.

The terms "Programming" and "Coding" have different meanings for different computers.
For the DEUCE, programming means the preparation of a plan of the method of work to be
employed in a given problem and the translation of this plan into machine instructions.
These instructions are written in a machine language or code and are prepared an a diagram
known as an "Instruction Flow Diagram”. The broad plan of the method of work may be
prepared either as a series of statements or in diagrammatic form as a "Block Schematic
Diagram" or "Flow Chart".

After the machine instructions have been written they must be prepared for punching
oh cards before entry to the machine. This operation is known as "Coding". In DEUCE
the .operations of instruction writing, i.e., making a flow diagram of instructions, and
coding are closely associated. A beginner would be well advised to separate these processes,
learning first to do the one and then the other* In time, as his knowledge of DEUCE
programming increases he will realise that a knowledge of coding is helping to produce more
efficient flow diagrams.

In the definition of DEUCE given in the first sentence of this introduction two
terms have been used which may require explanation. These are "stored-programme" and
"digital". A machine is said to be of the stored-programme type when all the instructions

DPCS2

-1.02·
for a problem are held within the machine. Once such a machine has been loaded with
a programme it can proceed through the steps of the calculation at high speed and without
the need for human intervention. The term digital refers to the manner in which information
is represented within the computer. Numbers, instructions, alphabetic descriptions are all
contained in DEUCE as strings of electrical pulses representing the digits of coded
information. DEUCE works in the BINARY CODE and an understanding of this is essential to
efficient programming and operation of the machine.
1.2 REPRESENTATION OF INFORMATION.

1.2.1 Scale of Notation.
For everyday use it is common practice to use the decimal (or denary) scale of

notation to represent numbers. Ten symbols or cyphers are used to convey the notion
of no things, one thing, two things, etc., up to nine things, and these are written

0, 1» 2, 3» ... 9»
When it is necessary to convey the notion of more than nine things more than one cypher
must be used. The order in which these cyphers are written denotes the order of the
quantity represented by the cypher.

As an example
5327

means the number which is five thousands added to three hundreds added to two tens added
to seven units. The 7 representing seven units is placed on the right in the least
significant position and the 5 representing five thousands is placed on the left in the
most significant position.

More explicitly,
5327

stands for the sum
5.105 + 3.102 + 2.101 + 7.10°

There is no single cypher to convey the notion of ten. This is represented by the pair
of cyphers 10 and ten is known as the radix of the denary scale.

If we use a radix of seven, no single cypher will be used to convey the notion of
seven. Again we use the pair of cyphers 10 and this time we need only seven single cyphers
to convey the notions of numbers of things from nought to six.

In this scale 354 stands for
_ _2 _ _1 ,_03·7 + 5.7 + 4*7

1.22 The Binary Scale of Notation.
Although the binary scale has been known for centuries, (it was in use in ancient

China,)its modern importance derives from its use in electronic computers. la this scale
only two cyphers are needed, 0 and 1 representing the notions of no things or one thing.
The radix is two and all numbers are counted as sums of two and powers of two#

,The binary number 11001 stands for
1.24 + 1.23 + 0.22 + 0.21 + 1.2°

which is the quantity twenty-five.

DPCS2

-1 .03·

The f i r s t eight common numbers are represented in the binary sca le a s

0II0

4 = 100

1 = 1 5 = 101

2 = 10 6 = 110

3 = 11 7 = 111

The rules of addition in the "binary scale are quite simple·
0+0 « 0 } 1+0 ■ 1 } 0+1 = 1;

are self evident; 1+1 = two which is written as 10 and from this 1+1 = 0 with a one to cany
to the next higher place·

Note that if a binary number consists of a string of ones as in 1111 (=15)» and on®
is added at the least significant position, all the digits of the original number become
zero and a one appears at the most significant end·

e.g· 1111 +
1

10000

If this addition takes place in a binary computer which has room for only four places of
significance in its registers, the one appearing at the most significant end will be lost
and the apparent result will be zero. Now adding one to something and producing nothing
leads us to suggest that the "something" is minus one and indicates a method of representing
negative numbers·

1.2.3 Binary Non-Integers·
In the denary scale, non-integers are represented as tenths, hundredths, etc*, and

5.102 + 3.101 + 2.10° + 7*1θ"1 + 4.10"2
is written as

532.74
The indicator · denotes the point where the indices of the radix change from positive to
negative· The quantity to the left of the indicator (the decimal point) is the integral
or whole number part of the number. The quantity 74 to the right of the decimal point
represents the fractional (non-integer) part· We say that we have two decimal places·

Similarly, non-integers may be represented in binary in quantities of halves,
quarters,eighths, etc., and the number

1101.101

stands for
1.23 + 1.22 + 0.21 + 1.2° + 1.2**1 + 0.2-2 + 1.2~3

or
13 + i +i = 13|·

The first eight binary places are represented as
2**1 = 1 /2 = 0,1 2 "5 = 1/32 e 0,00001

2-2 = 1/4 = 0.01 Z 6 = 1/64 = 0.000001
2~3 π 1/8 b 0.001 2“7 = 1/128 e 0.0000001
2*^· = 1/ 16= 0.0001 2“8 = 1/256 = 0.00000001

In decimal, multiplying by ten involves moving the number up (left) one place and
adding a nought·

e.g· 523 x 10 b 5230

DPCS2

3m binary, moving a number up one place and adding a nought corresponds 1» mnltlptyijng
by two

1101 x 2 a 11010

In decimal this corresponds to moving the decimal point to the right and likewise in
binary the process is the same, moving the binary point to the right

1101.00 x 2 = 11010.0
Division by two in the binary scale involves moving the binary point to the left

110.01 a 6.25 = 6 1/4

110.01 <2 = 11.001 a 3.125 = 3 i

1.2.4 Binary Numbers in DEUCE.
Binary numbers in DEUCE are represented by trains of pulses representing ones and

spaces representing noughts. Each number group has room for 32 pulses or spaces and the
binary numbers in DEUCE thus have 32 digit positions. The digits follow one another in
time sequence, the least significant digit appears first followed by the next and so on,
until the arrival of the 32nd digit completes one number. The next digit to appear will be
the first of the same or another number, and the timing circuits of the DEUCE ensure that
the numbers are not in danger of being mixed up.

The digit positions are conveniently numbered from 1 to 32 and we speak of the
digit position as

P1 P2 P3P30 P31 P32
P^ is the least significant position and P^g 'As Ahe most significant position. It will be
noticed that the order of significance is reversed. As many good reasons can be put forward
for this method of representation as for the more conventional right to left order. Frorn
this point all binary numbers win be written in the reverse order. This should not prove
an inconvenience as you are probably learning binary for the first time and it is as easy
to learn the reverse method as any other.

The first 32 binary numbers are written in the DEUCE convention below and all these
must be committed to memory without delay.

0 = 00000 8 = 00010 16 = 00001 24 a 00011

1 B 10000 9 a 10010 17 a 10001 25 B 10011 *

2 a 01000 10 a 01010 18 a 01001 26 a 01011

3 a 11000 11 a 11010 19 * 11001 27 ■ 11011

4 a 00100 12 a 00110 20 a 00101 28 a 00111

5 = 10100 13 a 10110 21 a 10101 29 * 10111

6 a 01100 14 = 01110 22 a 01101 30 a 0 1111

7 B 11100 15 a 11110 23 a 11101 31 8 11111

1.2.5 Binary Arithmetic.
Addition of binary numbers is quite simple and is frequently of use in modification of

DEUCE instructions. The rules, already given, are
0+0 a 0, 1+0 a 1, 0+1 a 1, 1+1 a 0 and carry 1

Example 13 + ‘O'11
12 0011

25 10011

-1.04-

DPCS2

Subtraction of binary numbers is also straightforward. The rules are j

1-0 = 1» 1-1 = 0, 0-1 = 1 and borrow 1·
Example 25 - 10011 *

12 00110

13 10110

Multiplication of binary numbers is considerably simpler than decimal multiplication·
There are no multiplication tables to learn· To multiply 19 by 13 proceed as follows:

19 = 11001
13 s 1011

(a) 11001
(b) 00000
(c) 11001
(d) 11001

i :171111

(a) There is a one in the units position of 13 so we copy 19 in the units position
of the partial product·

(b) The digit in the 2's position of 13 is zero so we make no copy of 19 in the 2's
position· This step would normally be omitted.

(c) The next digit of 13 is a one and we make a copy of 19 starting at this digit
position.

(d) The next digit of 13 is also a one and again we make a copy of 19 with its
least significant digit in the appropriate position· All the copies of 19 are added
together to form the result·

Division of binary numbers is rarely necessary for preparing work for DEUCE. The
usual method long division is used and further mention of division will be made later in
dealing with the DEUCE divider·

1»2*6 Scale of 32 Notation.
y Since binary numbers in DEUCE have 32 digits it would be both time consuming and

exhausting to speak of or write 32 digits every time we refer to a number· A compressed
notation has been agreed upon as a useful convention to simplify operations on binary
numbers·

Suppose the binary number is
1011011011010110011001011

This is divided into groups of five digits each
10110/11011/01011/00110/01011

The value of each group is written in place of the group with the group numbers in order
from the left·

We thus have
13/27/26/12/26

The separator lines are omitted and this is finally written as
13 , 27 , 26, 12, 26.

This is a standard method of representing binary numbers* All groups consist of five binary
digits except where a number represents a number in DEUCE. As there are 32 digits in a

••1 «05~

-1.06-
DEUCE number this is represented by six groups of five digits and a top group of two digits·
The number in DEUCE

11000, 11010, 11011, 10110, 11011, 00011, 10

is written
3, 11, 27, 13, 27, 24, 2.

1.2.7 Equivalent Numbers of Binary and Decimal Places·
It will have become apparent that binary numbers are longer than their decimal

equivalents. To estimate the ratio of binary digits to decimal digits necessary to represent
any given quantity, let the quantity Q be represented as 10a with d decimal digits and
2** with b binary digits·

Then Q = 10d = 2b
or d = b log 2
Then b/cl = 1 /lo g 2 = 1/.3010 3-

Roughly three times as many places are needed in the binary representation of a nunber
as in the corresponding decimal representation·

1.2.8 DEUCE Sign Conventions.
The largest integer which can be accommodated in one DEUCE register is

P1 P2 P3P32
with a one in each P position.

32This has the value 2 - 1. If two numbers are added together in DEUCE and their
32sum exceeds 2 - 1 , the digits which should occupy positions P^, P ^ etc., are lost

since no provision is made for recording digits in these positions. Working with positive
32numbers only, DEUCE can handle numbers in the range 0 to 2 - 1«

31Exactly half these numbers from 0 to 2 - 1 have a zero in P,_ and the remainder,
31 32 31from 2 to 2 - 1, have a one in the P^2 position. All the numbers in the range 0 to 2 - 1

may be taken as positive numbers and the remainder, with a one in the P^g position acting
as a sign digit, are usedas a range of negative numbers. In section 1.2.2 it has been
suggested that a string of ones represents minus one since adding one to such a string
gives a zero result. The actual value of ary negative number is thus not the value of the
first 31 digits, with P^2 acting as the sign.

If 11111111111111111111111111111111 s 252 - 1
plus 1 a 1
= doo'oooooocioooooooooooooocxilobock» / 1 . lost
Then 252 - 1 = -1 ·

32In general, 2 - x = -x,
inhere x is any number in the range 0 to 2^ - 1,

The reader should check that this is a consistent system of positive and negative number
representation by working with a six-digit model DEUCE.

e.g. 1 = 100000 - 1 = 111111
5 = 101000 - 5 = 000000 -

101000

110111
c

now 2 - 5 = 000000/1
101000/

110111

Sindlarly, 0 - (-5) should give +5» This nay be checked as follows
000000/

110111/

101000/ 1(lost)
the rater range of HEDGE integers is thus

-231 , i < « » 7
corresponding to positive and negative numbers of about ten decimal digits*

One useful fact associated with the relation of positive and negative binary
numbers should be noted* Take any number in binary code x and change all the noughts
to ones and the ones to noughts. This gives a number known as "not x" written as Λ x
(or x)· Now add x to -vx and it will be apparent that we produce a string of ones,
i.e·, minus 1 .

Therefore, x + x = -1 or
- X = x + 1

This is illustrated for a six bit model by the following examples
x = 6 = 011000
x = 6 = 100111

X + x = (-1) 111111

From this simple observation we have a rapid method of recognising the negative of any
number* The rule is "To form the negative of any number, form the 'not' of the number and
add one in the least significant place"· ,

This process can also be done with the compressed notation, using the groups of
five method of writing binary numbers*

1(l· = 16, 24, 9 , 0 , 0

~ 104 » 15, 7, 22, 31, 31
which has been formed by subtracting each group from 31 *
Then -104 = 16, 7, 22, 31, 31·
τίνϊ n Is equivalent to subtracting the least significant group from 32 and subtracting

* the other groups from 3 1.
1 *2*9 Binary Coded Decimal Notation*
It is sometimes necessary to work in the half world of binary and decimal· This may

be done by representing each digit of a decimal number by its binary equivalent and placing
these binary coded decimal digits one after the other as follows*

Using four binary digits for each decimal digit, the number
1010/ 1100/0000/1110

represents 5 3 0 7
or, allowing for our DEUCE reversed order, the nunber

7,035
This method of representation is said to be in 4-bit B.C.D. , meaning Binary Coded Decimal
using four binary digits per decimal digit. Each four bit group constitutes a character*
Using four digits for each group it is possible to represent 15 different characters*
As this is not enough to cover the decimal digits and the letters of the alphabet, it
becomes necessary to use a 6-bit group code*

DFCS2 -

1-07-

-1 .0 8 -

Such a code is used in DEUCE in connection with the 80-column Input/Output machine
and for paper-tape. The DEUCE 6-bit code is given in section 1.2.12.

1.2.10 Useful Constants.
All values expressed in the scale of 32, with the most significant digit on the

right.
10 •.10
102 • 4, 3
103 c 8, 31
104 16, 24, 9
105 • 0, 21, 1, 3
106 • 0, 18, 16, 30
107 «• 0, 20, 5, 17, 9
108 • 0, 8, 24, 11, 31, 2
109 4 0, 16, 18, 21, 25, 29
1010 • 0, 0, 25, 23, 0, 10, 9
1011 • 0, o, 26, 13, 7, 4, 29, 2
1012 • 0, 0, 4, 10, 10, 10, 3, 29

10-1 26, 12, 6, 19, 25, 12, 6, 3.
25 ..10“2 24, 21, 7, 10, 24, 21, 7, '10.
25 ,.10-3 25, 11, 26, 13, 18, 24, 0, 1.
21°,.1θ’4 28, 24, 26, 5, 14, 27, 8, 3.
215 ,.1θ“5 14, 28, 8, 12, 13, 17, 15, 10.
21 3 ,.10*■6 27, 2, 20, 23, 23, 17, 1 , 1.
22 0 ,.10'-7 29, 21, 6, 5, 31, 1 1 , 11, 3.
225 ,.10'•8 2, 6, 2, 23, 3, 19, 23, ·10.
225 .10*•9 19, o, 29, 11, 16, 1 1 , 2, 1 .
23 0 ,.10'■10 24, 14, 22, 3 1, 13, 30, 13, 3.
23 3 ,.10'•11 6, 15, 1, 3 1, 31, 26, 31, ·10.
235 ,.10'■12 23, 4, 16, 25, 28, 5, 3, 1.

i 0, o, 0, 0, 0, ■0, 0, 16.0
i 21, 10, 21, 10, 21, 10, 21, 10.0
1/5 19, 25, 12, 6, 19, 25, 12, 6.0
1/7 18, 4, 9, 18, 4, 9, 18, 4.0
1/9 18, 3, 7, 14*, 28, 24, 17, 3.0
1/11 29, 2, 29, 2, 29, 2, 29, 2.0
1/13 17, 29, 4, 22, 19, 24, 14, 2.0
1/15 17, 8, 4, 2, 17, 8, 4, 2.0
1/17 15, 24, 3, 30, 16, 7, 28, 1.0

)

DPCS2

-1.09-
b 0, o, o, o, 0, o, o, 16.
b 11, 21, 10, 21, 10, 21, 10, 5.
b 11, 21, 10, 21, 10, 21, 10, 1.
1/5! 2, 17, 8, 4, 2, 17, 8, 0.
1/6! 27, 2, 12, 11, 16, 13, 1, 0.
1/7! 13, o, 20, 1, 16, 6, o, 0.
b 2, 16, 6, 0, 26, o, 0, 0.
1/9! 7, 30, 14, 28, 2, 0, 0, 0.
1/10! 20, 28, 7, 9, o, 0, 0, 0.
1/11! 25, 28, 26, o, 0, 0, 0, 0.
1/12! 23, 7, 2, o, 0, 0, 0, 0.
1/13! 17, 5, o, o, 0, 0, 0, 0.
1/14! 13, 0, o, o, 0, 0, 0, 0.
1/15! 1, 0, 0, o, 0, 0, 0, 0.

π 6, 4, 2, 21, 22, 31, 16, 4.3
e 11, 20, 24, 2, 21, 16» 31, 22.2

√ 2 20, 31, 25, 12, 30, 4, 8, 13.1
y 30, 27, 24, 15, 6, 2, 15, 18.0

√ 3 5, 12, 1, 29, 26, 19, 13, 23.1
1/K5 2, 4, 11, 20, 19, 6, 15, 18.0
logic® 28, 4, 21, 24, 30, 22, 28, 13.0
loge10 11, 21, 29, 14, 3, 27, 21, 9.2
lpg2|
log/

24,
18,

21,
30,

20,
29,

12,
15,

7,
1,

10,
25,

5,
5,

14.1.
22.0

π = 3.141, 592, 653,6
e - 2.718, 281, 828, 46

—1.10«

n 2n n 2n
1 2 36 6 87194 76736
2 4 37 13 74389 53472
3 8 38 27 48779 06944
4 16 39 54 97558 13888
5 32 40 109 95116 27776

6 64 41 219 90232 55552
7 128 42 439 80465 11104
8 256 43 879 60930 22208
9 512 44 1759 21860 44416

10 1024 45 3518 43720 88832

11 2048 46 7036 87441 77664
12 4096 47 14073 74883 55328
13 8192 48 28147 49767 10656
14 16384 49 56294 99534 21312
15 32768 50 1 12589 99068 42624

16 65536 51 2 25179 98136 85248
17 1 31072 52 4 50359 96273 70496
18 2 62144 53 9 00719 92547 40992
19 5 24288 54 18 01439 85094 81984
20 10 48576 55 36 02879 70189 63968

21 20 97152 56 72 05759 40379 27936
22 41 94304 57 144 11518 80758 55872
23 83 88608 58 288 23037 61517 11744
24 167 77216 59 576 46075 23034 23488
25 335 54432 60 1152 9215Ο 46068 46976

26 671 08864 61 2305 84300 92136 93952
27 1342 17728 62 4611 68601 84273 87904
28 2684 35456 63 9223 37203 68547 75808
29 5368 70912 64 18446 74407 37095 51616
30 10737 41824 65 36893 48814 74191 03232

31 21474 83648 66 73786 97629 48382 06464
32 42949 67296 67 1 47573 95258 96764 12928
33 85899 34592 68 2 95147 90517 93528 25856
34 1 71798 69184 69 5 90295 81035 87056 51712
35 3 43597 38368 70 11 80591 62071 74113 03424

NEGATIVE POWERS.

2-5 .125 105 2 '8 390.625
2-4 .0625 105 2-1° 97.65625
2-5 .03125 105 2-16 1.52587 89062 5

2-6 .01562 5 1010 2"32 2.32830 64365 38696 28906 25

2“ 7 .00781 25

2"8 .00390 625

-̂°CS2

-1.11
1.2.12 Binary Codine of Alpha-Numeric Characters in DEUCE.

ard Input Code. 6-Bit 6-Bit Equivalent Associated Card Output

JX08 other

Eciuivalent
(Decimal)

(Binary).

(Most Sie. on rieiit)

Symbol. Code.

YX08 other
• «0·· 0 0000 00 0 • ·0·«
• · * «Ί 1 1000 00 1 • * ·
• · · · 2 2 0100 00 2 • · · *2
* · · *3 3 1100 00 3 • · · *3
• · · ·4 4 0010 00 4 • · · *4*
• · · · 5 5 1010 00 5
•» · .6 6 0110 00 6 • · · #6
• · · ·7 7 1110 00 7 • · · *7
• · .8. 8 0001 00 8 •«*8#
....9 9 1001 00 9 • · · · 9
...82 10 0101 00 10 ...82
...83 11 1101 00 11 ...83
...84 12 0011 00 12 ...84
...85 13 1011 00 13 ...85
...86 14 0111 00 Free • · .86
Blank 15 1111 00 Space Blank
Y.... 16 0000 10 Plus Y....
Y...1 17 1000 10 A Y...1
Y...2 18 0100 10 B Y...2
Y...3 19 1100 10 c Y...3
Y...4 20 0010 10 D Y...4
Y...5 21 1010 10 E Y...5
Y...6 22 0110 10 P Y...6
Y...7 23 1110 10 G Y...7
Y...8 24 0001 10 H Y...8
Y...9 25 1001 10 I Y...9
Y..82 26 0101 10 Free Y..82
Y..83 27 1101 10 Free Y..83
Y. .84 28 0011 10 Free Y ..84
Y..85 29 1011 10 Free Y ..85
Y. .86 30 0111 10 Free Y..86
Y..87 31 1111 10 Free Y..87
.X... 32 0000 01 Minus «X· · ·
.X..1 33 1000 01 J .X..1
.X..2 34 0100 01 K •X..2
.X..3 35 1100 01 L .X..3
.X..4 36 0010 01 M .X..4
.X..5 37 1010 01 N •X..5
.X..6 38 0110 01 0 •X* «6
.X..7 39 1110 01 P •X..7
.X.8. 40 0001 01 Q .X.8.
JC..9 41 1001 01 R .X..9
.X.82 42 0101 01 Free .X.82
.X.83 43 1101 01 Free .X.83
.X.84 44 0011 01 Free .X.84
-.X.85 45 1011 01 Free .X.85
.X.86 46 0111 01 Free .X.86
.X.87 47 1111 01 Free .X.87
No Code 48 0000 11 Free • »0· ·
..0.1 49 1000 11 Free ..0.1
..0.2 50 0100 11 S • ·0·2
• .0*3 51 1100 11 T ..0.3
• *0«if 52 0010 11 u
..0.5 53 1010 11 V ..0.5
• *0#6 54 0110 11 w • »0#6
..0.7 55 1110 11 X ..0.7
.<•08. 56 0001 11 Y ..08.
..0.9 57 1001 11 z ..0.9
..082 58 0101 11 Free ..082
..083 59 1101 11 Free . .083
..084 60 0011 11 Free ..084
..085 61 1011 11 Free ..085
..086 62 0111 11 Free ..086
. .087 63 1111 11 Space/lgnore Hank

DPCS2

CLASS EXERCISES»
1 · Write the number 163 in

(a) binary
(b) octal (scale of eight)
(c) scale of 32 Place the IS digit or group on the left,
(d) 4-hit B.C.D.
(e) 6-bit B.C.D.

i
2c Write the number 0.85625 in

(a) binary (32 digits signed with 16 binary places)
(b) binary, 30 binary places
(c) scale of 32 for DEUCE working with 30 b.p.

3* From the table of useful constants write the compressed form of the following numbers
in a form suitable for DEUCE

(a) 25 . 1θ“2 to 30 b.p.
(b) 215 . 1θ”4 to 25 b.p.
(c) 2'̂ 1 . 10**̂ integral part

4. Use the table of useful constants to write the conpressed form of
(a) 25 , 10^
(b) 221 . 102
(c) 26 . 107

2f)o If represents 2 write the values of

P10 P15 p23 P293 12 u 25What P position corresponds to 23 2 2 2 χ
6. Using a six-digit model DEUCE, perform the following operations

(a) Add 13 and 9 in binary
(b) Add 25 and-8 in binary
(c) Subtract 13 from 23 in binary
(d) Subtract 15 from 13 in binary
(e) Write the negative of +27, -13, +7, -2
(f) Check each of (e) by an alternative method.

7. Using the table of useful constants, write out the binary and compressed binary
for each of the folla-zing

(a) 1/lOth to 5 b.p.
(b) 1/lOth to 12 b.p.
(c) 1/lOth to 15 b.p.
(a) l/7th to 20 b.p.

8. Write the binary patterns for
(a) (V3)rd to 30 b.p.
(b) (2/3)rds to 30 b.p.
(c) Add these together
(d) If the sum of (a) and (b) is not 1, what should be done to either (a) or (b)

to make the sum one.
9. Write out the pattern - fnr each of the following in DEUCE six-bit code (least significantat Left)

(a) 76324
(b) -4321
(c) DEUCE

-1 .1 2 -

DPCS2

•1*13-
(d) Names·

10· Write out the binary (five digits) for
(a) 19
(b) 25
(c) 27
(d) 13
(e) 26
(f) 31
(g) 15
(h) 30
(i) 10
(k) 23.

DPCS2

Exercise Solutions
1. (a) 11000101

(b) 3, 4, 2
(c) 3, 5.
(a) 1100 : 0110 i 1000
(e) 110000 i 011000 ϊ 100000.

2 . (a) 00 00 00 00 00 01 01 00 .00 00 00 00 00 00 00.00
(¾) 000000 - - - - - - - - 00 01 01 00.00
(c) 0, 0, 0, 0, 0, 5.0

3. (a) 8, 10, 24, 2 1, 7, 10.0
(b) 27, 5, 14, 27, 8, 5-0
(c) 28, 22, 17, 6, 0, 0.0

4. (a) 0, 4, 14, 2, 0, 0.0
(b) 0, 0, 0, 0, 8, 6.0
(o) 0, 0, 8, 11, 2, 19.0

5 . 29, 214, 222, 228
P4 ’ P13’ P15 * P26

6 . (a) 101100
100100
111010

(b) 100110
000111
100010

(c) 111010
101100
010100

(a) 101100
111100
011111

(e) 101001
101100
100111
010000

7. (a) 11000.0 3, o , 0 , 0 , 0, 0 .0

(b) 010110011000.0 26, 12, 0, 0, 0, 0.0
(c) 101100110011000.0 13, 6, 3, 0, 0, 0.0
(a) 10100100100100100100.0 5, 9, 18, 4, o , 0.0

8. (a) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10.00
11 01 01 01 01 01 01 01 01 01 01 01 01 01 01.00
00 00 00 00 00 00 00 GO 00 00 00 00 00 00 00.10

9. (a) 001000 010000 110000 011000 111000
4 2 3 6 7

(b) 100000 010000 110000 001000 000001
1 2 3 4

(c) 101010 110010 001011 101010 001010
E C U E D

(a) 010011 101010 001001 100010 101001
S E M A N

DK5S2

10. (a) 11001
(b) 10011
(c) 11011
(a) 10110
(e) 01011
(f) 11111

(g) 11110
(h) 01111

(i) 01010
(k) 11101

DPCS2

«

2

- 2.01-

LECTURE 2.
2.1 MACHINE ORGANISATION.

Figure 2.1 shows a schematic diagram of DEUCE. The main functional parts are a High
Speed Store, Backing Store, Arithmetic Unit, Input and Output units and a CONTROL Unit.
The last mentioned exercises control over all other parts of the machine in accordance with
the instructions which enter CONTROL from the storage unit. In the diagram, solid lines
indicate paths of information transfer and dotted lines denote control pathways.

Fig 2.i BASIC MACHINE OECANISATIOM

2.2 PULSE REPRESENTATION OF NUMBERS.
The DEUCE is a serial machine, in which numbers are represented hy trains of

uniformly spaced pulses. Each pulse represents a one in the binary code and gaps between
pulses represent zeros. These pulses pass any point in the machine at the rate of one
million pulses per second. The time between pulses is thus 1 microsecond (1 yuaec.)·
2.3 DEUCE WORDS AND MINOR CYCLES.

As has been mentioned, there are 32 digit positions in each DEUCE register. The
Information contained in any register or storage position may be a binary number, an
instruction, a group of characters representing alphabetic information or merely a pattern
used for selection purposes. For this reason it is convenient to refer to the groups of
32 pulses by a generic term applicable to all these and it is customary to refer to a
group of 32 pulses as a WORD. Since pulses are spaced at 1 ^usec. intervals, one WORD
passes any point in the machine in 32 /usee., one WORD TIME or MINOR CYCLE. 32 words pass
any point in 102¾. /U seconds, known as a MAJOR CYCLE.
2 A DEUCE STORAGE STRUCTURE.

There are two types of storage unit in DEUCE, Mercury Delay Lines or Tanks and a
Magnetic Drum. Each storage unit has within it a number of storage positions, 402 in the
DPCS2

-2.02-
Tanks and 8192 on the DRUM and each storage position can contain one word. All the current
working data and instructions Bust be contained in the High Speed Store (H.S.S.) and the
Drum serves as a backing store for data and instructions not in current use. A description
of the Drum will be given in a later Lecture and we shall concentrate on the structure of
the H.S.S.

As previously noted, there are 402 storage positions in the H.S.S. and it would be
reasonable to give these names (or addresses) from No. 1 to No. 402. We do not do this,
however, for the design of DEUCE is such that these stores are not uniform in their properties
and the H.S.S. consists of four types of store. A diagram of the DEUCE H.S.S. is given in
Figure 2.4 and will be referred to as the STORE DIAGRAM.

«

FlC 2.4 DEUCE, high Speed Gtoke.

iro•o
Y

--2*0 if.”
A careful inspection of the store diagram will reveal the following important

features:
(a) The store is discontinuous· There are four main types of storage block.

One type (e.g. TS13) contains only one storage position. Other types contain
two (e.g. DS19),four (QSI7), or 32 storage positions.

(b) For all storage positions in blocks containing more than one word, the address
given to the storage position consists of two numbers, the number of the block
and a position within the block. For example all storage positions in Block 8
are numbered from 8_ to 8,.. There would appear to be an oddity about the0 3 1
suffix given to a word in the two word stores. Instead of 19q and 19̂ we
have 190 and 19, but there is a good reason for thie.

2 3
2.4.1 The Teinooraxy Stores.
There are five single word mercury delay lines. Four of these are data storage positions

and the fifth is a special store into which all instructions are transferred for control
purposes.

a

The four storage positions are known as

TS1p
TS14
TS15 and
TS16

The single word contained in each of these stores circulates out of and back into the
storage position once every minor cycle.

2.4*2 The Double Stores.
There are three of these, DS19, DS20, and DS21. Each can contain two words one in

each of two storage positions. These storage positions are denoted as 19g for DS19»
20_ and 20, for DS20 and 21 . 21, for DS21.2 3 2 3

Since there are two words in a DS tank it takes two word times for both words to circulate
in the tank. In one minor cycle (for DS19) Ore word in 19,, emerges and reenters the storage
unit and in the next minor cycle the word in 19^ emerges and re-enters.

In one major cycle therefore the word in 19g emerges sixteen times (every other minor
jycle) and so does the word in 19^ but in those minor cycles when 19,, is not available.

2.4*3 The Quadruple Stores.
Two storage units QS17 and QS18 contain four storage positions each, referred to as

7q , 17^, 17^, 17 and 18Q, 18^, 18?> 18^. As the storage unit has four storage positions
he total content of the unit (all four words) circulate out of and back into the unit once
very four word times. If 17q emerges and re-enters in the first minor cycle it will be
ollowed by 17̂ then 17g and finally 17^ when it becomes the turn for 17q again. In each
ajor cycle, each of the words in a QS emerge eight times.

2.4.4 The Long Delay Lines.
main storage blocks of DEUCE consist of twelve long delay lines each containing

> storage positions. The storage units are numbered as
D.L. 1
D.L. 2

•

D.L. 11
D.L. 12

CS2

and the storage positions in each D.L. are identified as 8q , 8^, 8^ ... 8^,
taking D.L. 8 as an example.

As the long mercury delay lines contain 52 storage positions it will be clear that
each word emerges from a long delay line once in every 32 minor cycles* In fact this explains
the suffixes attached to the storage positions. The word stored in position 8q emerges
from D.L. 8 in minor cycle 0. Similarly the word in 8^g emerges from the line in m.c.18
and only in this minor cycle can a copy of it be sent to another part of the computer or
another word sent to 8^g to replace it*

In general the word stored in Delay Line A in minor cycle m is said to occupy storage
position Affi* Only in minor cycle m can it be replaced or a copy moved to another corresponding
storage position or to one of the temporary stores*

2*4*5 Sources and Destinations.
Most of the work which goes on in a digital computer involves moving information out

of storage positions into other storage positions, operating on the information in some
specified way and moving the information back again into the original (or possibly another)
storage position*

’ This means that storage positions must be capable of emitting copies of the information
stored and capable of receiving information which is transmitted to them from some other
storage position* Storage positions, in fact have an outlet and an inlet* These are known
as SOURCES and DESTINATIONS. A source is not provided for each storage position, only for
each block. All the words in D.L. 8 for example, must come out from the source associated
with D.L. 8, written as SOURCE 8 or S8.

In like manner any one of the words of D.L. 5 may be replaced by sending a word to
the DESTINATION of D.L. 5 (D5). If the new information is sent to D5 in minor cyclo 15 then
the new word will replace the information previously stored in 515*

On the Store Diagram there are 21 blocks of storage. With each of these is associated
a SOURCE and DESTINATION having the same number as the block with which it is associated*
For example S13, S14* S20, S6 are the Sources of TS13, TS14, DS20 and D.L. 6 while D15, D21,
D17, D9 are the DESTINATIONS of TS15, DS21 , QS17 and D.L. 9 respectively.

) 2.4*6 Rules of Word Transfer*
One basic operation in computers is the transfer of words from one storage position to

another. In most machines this can only be done by moving a word from one storage position
to a special register and from the register to another storage location. Sometimes this
has to be done on DEUCE, sometimes not. It all depends on which storage positions are
involved in the transfer* This may be deduced from the following rules:

(1) Words in TS13, 14, 15» 16 may be sent directly to any other storage position
and words in any storage position may be sent directly to TS13, 14, 15 or 16* We say
that S16 and P16 are available in every minor cycle*

(2) Words in 192> 20,,, 21 ̂may only be sent directly to other storage positions
with even suffixes and vice versa. Words in 19^» 20^, 21^ may be transferred directly to
storage locations with odd suffices. We say that 19g> 20g, 21 g are available only in EVEN
minor cycles and 19^, 20^, 21^ are available only in ODD minor cycles.

(3) The four words in QS17 and QS18 are each available in eight minor cycles out
of 32.

“2*05“

-2.06-
170 is available in m.c. 0 4 8 12 16 20 24 28
171 is available in m.o. 1 S 9 13 17 21 25 29
172 is available in m.c. 2 6 10 14 18 22 26 30
17^ i3 available in m.c. 3 7 ̂ 15 19 2J 27 31

word in 17q can only replace a word in a corresponding minor cycle, e.g. 17q can replace
12 w 9go 171 can replace 8,. or 12^ and vice versa.

(4) Each word in a D.L. is unique with respect to its ability to transfer directly
o another D.L. 8q can only replace, say, 1q , 2q , 3q » 4q etc. while can only replace
nother m.c. 25 word.

It will be noted from these rules that access is highest in the Temporary Stores and
owest in the D.L.'s. This is a common feature of cyclic storage. Low capacity stores
ave high access and high capacity stores, low access.

Examples.

The transfer from any SOURCE S to any Destination D is the basic DEUCE instruction .
LI DEUCE instructions are written

S-D
anetimes it is necessary to specify a particular minor cycle in which case we write

S-D m.c. m
aere is nothing more to DEUCE programming than arranging the correct sequence of S-D
istructions with the appropriate S and D in each to meet the requirements of any problem.

Example 1.
To transfer a copy of the word in TS13 to each of TS14» DS192* 17q » 5g end 12^ would

squire five instructions
13 - 14
13 - 192
13 - 170
13- 56
13 - 12„

Example 2. ^
To transfer a copy of the word in 5Q to 17Q and to 12^ would require three instructions

5q - 17q can be made direct (Rule 3)
5g - 13 because 5g can not transfer directly
13 - 12^ to 12^ nor can 17Q·

lother way of doing this (also assuming that TS13 is available as a shunting or buffer
borage position) is

58 “
13 -1 7 0
13 - 1 211

Example 3.
To transfer the word from 17^ to 212 we may proceed as follws, assuming TS14 is

railable as a buffer,

17j** 14 in ary m.c. of 3» 7, 11 ··· 31
14 - 212 in any even m.c.

?CS2

If both storage positions are even or both are odd an even or odd D.S. position nay
be used as the buffer, EVEN buffers for EVEN minor cycles, ODD buffers for ODD. To
transfer 4^ q to we may proceed as follows

4..- 20„ m.c. 10 of course
10 2

2°2 - 8,jg m.c« 16 only,
using 20g as an intermediate position.

Example 5.
Transfers 17q -12^

181 - 192
®6 " 1016

and a whole lot more are impossible. Why?
2.4*7 Functional Sources and DESTINATIONS.
Since ev e ry DEUCE instruction consists of a pair of numbers S and D written as

'> S-D,
the order code of DEUCE is contained in a description of all the 32 SOURCES and 32
DESTINATIONS.

At this stage the student already knows 21 of each of these, bet us look at some
of the others.

SOURCES of Special Numbers.
m is a source emitting a 32-digit word in which P1 is one and all other digits are

zero.
528 is a source which emits a 32 digit word in which is one and all other digits are

zero.
529 is a source which emits a 32 digit word in which P ^ ie one end *11 other digits are

zero.
) S30 is a source which emits an all zero 32 digit word.

S31 is a source which emits a word in which all 32 digits are ones, i.e. S31 emits -1.
Sources 27 to 31 are available in every minor cycle of machine operation.

The sources of special numbers are used for counting, marking, and formation of strobe
digits. Source 30 (zero) is used to clear storage positions at the start of loops
and for clearing the magnetic drum.
Accumulator Destinations.

Addition and subtraction take place in three of the 402 storage positions. These
arp TS13, DS212, D S 2 1 T S 1 3 is known as the short accumulator and DS21 is the long
accumulator.

Any transfer to D13 causes the transferred word to replace the contents of TS13
and in this TS13 behaves just like any other storage position. There are however, two
other Destinations associated with TS13. These are D25 and.D26.
D25 A word sent to D25 is added to the contents of TS13·
D26 A word sent to D26 is subtracted from the contents of TS13.
D25 and D26 are available in all minor cycles of machine operation.

-2.07-
Example 4.

To form the number 5P̂ in TS14. This may be done in several ways. With the facilities
so far described however, we may proceed as follows

27-13 Send P1 to TS13
13-25 Add TS13 to itself i.e. Form 2P1 in TS13.
13-25 Repeat giving
27-25 Add another
13- 14 Transfer to TS14

Example 7.
To form the negative number corresponding to a number in TS14·
Method.
Subtract the nuniber in TS14 from zero

30-13 Clear TS13 (sero)
14- 26 Subtract contents of TS14·

Result in TS13·
fExample 8.

To form a word which has = 1, P^y = 1, P^g = 1·
27- 13 Send P., to TS13
28- 25 Add P1? to the P.) in TS13
29- 25 Now add PJ2.
Result in TS13.

Example 9.
To form a word which has P . = 1 and P._ to P all ones.1 17 32
Method.
Subtract P17 from P^

27- 13 Send P1 to TS13
28- 26 Subtract P^y ^
Result in TS13.

2.4.8 Long and Double Transfers.
It has already been stated that all DEUCE instructions are of the form

S-D in m.c, m
o far we have not given any indication that these transfers can be for other than one miner
ycle only. One very useful facility of the DEUCE is the ability to make transfers for
py number of minor cycles up to 32. This is known as a long transfer. We indicate on a diagram
hat a transfer is for n minor cycles as follows

S-D (n m.o.)
It should be appreciated that this facility comes from providing each block of storage

ith a coranon SOURCE instead of providing each storage position with its own SOURCE. By keeping
he SOURCE of D.L. 8, S8, open only for m*o. 5 then comes out. By keeping S8 open for
0 nuc. starting at m.c. 5 ell the words from 8,. to 8 ^ come out in succession. If we open
he SOURCE of TS13 for, say 10 m.c., then 10 copies of the word in TS13 come out of S13 one
fter the other.

-2.08-
Example 6.

Since 2 minor cycles is less than 32 a transfer may be made for 2 m.e. using the
normal lofcg transfer facility. However, transfers for 2 aucr.xare so useful th&t a special
2 m,c. transfer facility is provided which gives greater flexibility in organising the storage
of instructions in the machine. We indicate that a transfer is for 2 m.c. by writing

S-D (d)
where the (d) stands for double.

The long and double transfers increase the power of DEUCE enormously and save instructions·
Example 10«
To form 5P. in TS14, as in Example 6.1
Method (a)
Clear TS13
Add P1 five times.

30-13 Clear TS13
27-25(5mc)Send to add to TS13

in five successive m.o.
13-14 Transfer to TS14.

Method (b)■ s e w s m a w · '

Add four to one in TS13·
27-13 Send P1 to TS13
27-25(4no)Add 4Ρή to P1
13-14 Transfer to TS14

Example 11.
To form a zero sum check in nuc. 31 of D.L. 8.
HOjE -When m.c. 0-30 of a DELAY LIKE contain information, m.c. 31 is frequently

used to store a number which is the negative of the sum of all the other words
in the DELAY LINE. This means that the sum of all words 0-31 is (or should be)

j zero and the D.L. ie said to be "zero-summed".
30 - 8^ clear 8^
30 - 13 dear TS13
8q* 26 (32 m*c. apy 32 m.c.)

This subtracts the sum of the words in D.L. 8 from
zero.

13 - 8 ^ Write the sum check in 8^

-2.09-

CLASS EXERCISES.
SINGLE, DOUBLE ana LONG TRANSFERS MAY BE USED with SOURCES 1-21, 27-31 and

DESTINATIONS 1-21, 23 ana 26,
1· Write instructions to perform the following operations·

(a) Put P2 in 8.,
(b) Put P2 to P51 in 21^.
(c) Put P^ and P ^ in 10,^.
(d) Put digits in all positions of D.L.9 except P32 ** 931*
(e) Clear D.L.11·
(f) Put -10 in TS16.
(g) Put P1 in all minor cycles of QS17·
(h) Put P ^ ^ , P18.31 in 192.
(J) Put P, in 212 Ρ,7 in 21^.
(k) Clear 21g.

2· A counter is stored in 5., y at P, position· Write the instructions to reduce the
counter by one and replace it in 5,y·
3· Two counters are held in and 19^ at P17 position· Write instructions to Add one
to both counters writing the updated count in 192 19j*
4. Write opposite each instructions the content of the relevant destination:

30 - 14
29 - 13
29 - 25
27 - 13
28 - 25
29-26
27-26
30 - 25
31 - 2$ (3 m*c·)
28 - 25
1 3 - 2 6 <

5» Write instructions to generate the following
(a) P10 in TS16.
(b) -P1Q in TS15·
(c) PgQ in TS14·
(a) *1-10» p20 1111813·

6» Write the instructions to add the contents of and 7,3 placing the results in 5^·
7· Write the instructions to add the contents of all minor cycles of D.L.11 placing
the result in TS14·
8.. Write instructions to add 17q and 17^» subtract 18, and I8g and place the
result in 21,·3

-2.10-

-2.11

EXERCISE SOLUTIONS.

(a) 27 - 13
13 - 25

13 - 816

< *) 29 - 13
27 - 26 (2 m .c.)

13 -
2 1 3

(c) 27 - 13

13 - 25 (3 m .c.)
28 - 25 (4 m .c.)

13 - 1015

(a) 31 - 9 (32 m .c.)

31 - 13

29 - 26

13 ~ n

(e) 30 - 1 1 (5 2 m .c .)

(f) 30 - 13

27 - 26 (10 m. a,)
13 ~ 16

(g) 27 - 17 (4 m .c.J

(h) oo 13

27 - 26

26 - 26
13 - 192

(J) 27 - 212
28 - 21

3

(k) 1O

212

517 " • 13

27 ·* 26

13 -' 517

192 ’ 13

28 - 25
15 - 1 9 2
1 9 , - 13

28 - 25
13 - 193

30 - 14 TS14 = ZERO.
29 - 13 TS13 =
29 “ 25 TS13 s ZERO*
27 - 13 TS13 - V
28 - 25 TS13 = p, + v
29 “ 26 TS13 * P1 + P l7t p 32
27-26 TS13 s P17 + p32
30 - 25 TS13 " P17 + P32
31 - 2ξ (3 o.o.) TS13 a P1 + P3-16 + P32
28 - 25 TS13 = P1 + P3-17 + p32
13 - 26 TS13 » ZERO.

DPCS2

HPC02

5. (a) 27 - 13
13 - 25 (9 nwc.)
13 - 16

(b) 31 - 13
13 - 25 (9 m.c·)
13 - 15

(o) 28 - 13
13 - 25 (3 bwc.)
13 - 14

(a) 27 - 13
13 - 25 (10 m.c.)
27-26
28 - 25 (8 m.c.)

6. 85 - 13

V 25
13 - 531

7. 30 - 13
11-25 (32 m.c.)
13 - 14

8. 30 - 13
173 - 25 (2 nuc.)
18̂ - 26 (2 nuo·)
13 - 213

3

-3.01-
LECTURE 3.

3.1
This lecture will be concerned with describing the following functional sources and

destinations
SO, S23, S24, S25, S26, S22.
D29, D27, D28, D24, D22, D23.

and the operation of the two trigger control circuits T.C.A. and T.C.B.
*3.2 SOURCE 0. S.O.

All computers have to be provided with a means for taking in data and instructions.
On DEUCE this is done using Source 0.

When the card reader is not running SOURCE 0 supplies whatever word is set on 32
handswitches on the Control Panel. These 32 switches and the 32 lights which monitor
them are known as the I.D. (input Dynamiciser). When the Card Reader is running SOURCE 0
supplies words corresponding to the patterns of holes punched on each row of the card.

SOURCE 0 is available in every minor cycle of machine operation.
Example 1.
To add a number set on the I.D. to another number in TS14* placing the result in TS15

we need three instructions.

14-13 Send nunfcer in TS14 to TS13
0 - 2 5 Add in the nunfcer from ID
1 3 - 15 Place the result in TS15

or 0 - 1 3 Send number from ID to TS13
1 4 - 25 Add in the number from TS14
13 - 1 5 Send the result to TS15

3.3 DESTINATION 29 D29.
The output destination on DEUCE is D29· Any word sent to D29 from another part of the

machine appears as a binary pattern of lights on a row of 32 lights on the Control Panel.
The row of lights is known as the O.S. (Output Staticisor).

If the card punch is running then any word sent to D29 is punched on a row of a card.
Sending a word to D29 does not remove the word which was previously present. The two

words merge in a manner known as an 'OR' combination.
Before any word is sent to D29 it is usual to clear the O.S. previously. This can be

done by a special instruction and is done automatically by the punch after each row is dealt
with.

Example 2,
To send the Contents of TS16 to the O.S. ve write

16 - 29
Example 3.
To put a P , p , and P,„ on the O.S. we write I 17 32

27 - 29 Send P to O.S.
28 - 29 Send P.-. to O.S.1 /
29 - 29 Send P32 to O.S.

DPCS2

-3 .02-

Example A.
If we send tvvo words successively to the O.S. and these have common digits we shall

obtain a pattern where digits exist in either or both words,
27 - 29
31 - 29

has no more effect than the single instruction
31 - 29

because 31 is all ones and this includes a P..1

D29 is available in every minor cycle of machine operation.
3.4 DESTINATIONS 27 and 28.

When DEUCE is obeying the instructions of a programme, each instruction usually
specifies only one successor. All computers are provided with ability to choose one of
two possible next instructions whenever this is necessary.

At all points in a programme where the sequence of events may take one of two paths
we insert a special instruction known as a DISCRIMINATION instruction. The effect of this
is to test whether some criterion is satisfied and if it is,lead to the first of two
possible successive instructions. If the test is not satisfied the machine obeys the
second of the pair of next instructions.

D27 tests if any word sent to it is positive or negative i.e. it looks to see if a
P^2 digit X3 present (negative) or absent (positive)

D28 tests if any word sent to it is zero or non zero i.e. it looks to see if there is
a complete absence of digits in the incoming word or not.

Example 5.
To test if the short accumulator is clear write

Example 6.
To test if the word in TS13 is positive or negative write

Example 7.
To subtract whichever is the smaller of the two words in TS14 and TS15 from the other

placing the result in TS16. If TS14 is greater than TS15 dear TS15 otherwise clear TS14.
We do not know which word is the greater but we must start somewhere so we subtract

TS15 from TS14· If the result is positive then TS14 is greater than TS15. If the result
is negative we repeat the operation in reverse order.

JPCSv.

.DPCS2

Notice how we can use the same 13 - 16 instruction (which places the result in TS16)
irrespective of the route followed.

Remembering the ability to perform transfers for up to 32 m.c. we can test if nil the
numbers in ary DL are all zero, all positive or any particular set of numbers is an all zero
or all positive set using only one (appropriate) discrimination.

Example 8,
To test if both numbers in DS20 are zero write

D27 and D28 are available in every minor cycle of machine operation.

Example 11 .
To test if the numbers in 10 g and TS14 are equal write

Example 10.
To test if there is at least one negative number in QS17 write

Example 9. *
To test i f all the storage positions of DL10 are empty write

The Instructions are

-3.03-

3 .5 SOURCE 2U - SHIFT UP.

To)if is the single length shifting register. Numbers may be uiifted up (multiplied
by 2 for one shift or 2° for n shift) using SOURCE 24·

If T314 contains any pattern of digits, SOURCE 24 emits a word which is the same as
the pattern in TSI4 moved up one place, i.e. multiplied by 2. If TS14 has a P ^ present
this will not be evident from SOURCE 24 because it will have been pushed off the top
of the word length.

-3.04-

Example 12.

To put a P^g in TS13 using SOURCE 24. write
28 - 14 P,-. ---- » TS1411
24 - 13 P.^ x 2 (i.e. P18)-»TS13

Example 13«
Are the top two digits of TSl6 the same?

Notice that we have a four exit decision sequence using three discriminations· If
Paths A and D are followed the top digits of TS16 are the same, if paths B and C are
followed the top digits of TS16 are different.

Example 14.
g

To move the word in TS15 eight places to the right (i.e. multiply by 2)
15 - 14 TS15 — >· TS14
24 - 14 (8 m.c.) Shift up 8 places
1 4 - 1 5 Place the shifted result back in TS15

Notice that we use a long instruction to replace the contents of TS14 with its former contents
shifted up one place for each minor cycle of transfer. In fact 24 - 14 (8 m.c.) has the
same effect as eight separate single minor cycle transfers of 24 - 14 and wty- use eight
instructions when one will suffice?

Example 15.
To test if the number in TS15 is divisible by four. If it is, the bottom two digits of

TS15 will both be zero.

DPCS2

Proceed as follows
-3.05-

3.6 SOURCE 23 - SHIFT DOWN
Just as SOURCE 24 supplies the contents of TS14 moved up one place, so SOURCE 23

supplies the contents of TS14 shifted down (* 2) one place.
(a) If TS14 has a present this will be lost off the bottom from SOURCE 23.
(b) If TS14 contains a P^g SOURCE 23 will provide a copy of this, i.e. if TS14 is

negative then SOURCE 23 will provide a negative number also.
By sending SOURCE 23 to TS14 for several minor cycles we can move words down in TS14

several places in one instruction.
Example 1 6 .

If TS14 contains Pg to P ^ , SOURCE 23 emits P̂ to P^q .
Example 17.

If TS14 contains P^g SOURCE 23 emits P ^ and P^2 (i.e. the original P^2 moved down to
P^ and a copy of the original P^2 supplied for good measure)

Example 18 .

TS15 contains the number of years (since 1900) in a date. To calculate the number of
leap years from 1900 to the given date. The number of leap years is the result given by
dividing the number of years by 4.

1 5 - 1 4 Send "years" to TS14
23 - 14 (d) t· 4 I
1 4 - 1 3 "Leap years" to TS13.

NOTE If there is a P̂ or a Pg in TS14 before the shift, these will be lost, but in
this instance it does not matter. We are interested in the quotient not the
remainder.

3.7 SOURCE 25 LO&ICAL "AND" TS14&TS15
SOURCE 25 emits a word which is (at first sight) a curious mixture of the two words

in TS14 and TS15. The word emitted has a one in every P position in which both TS14 and
TS15 have corresponding ones and zero in every other digit position.

Two binary digits can give rise to four combinations as follows
Word in TS14 P1 = 0; P = 1; P1 = 0; P1 = 1
Word in TS15 P1 = 0; ?1 = 0; = 1j P1 = 1
SOURCE 25 P1 = 0; P̂ = 0; P1 = 0; P1 = 1

This may be written much more explicitly as
TS14 0101
TS15 0011
S25 0001

DPCS2

Frora the definition of the word COLLATE (to compare in detail) it will be seen that
TS14 and TS15 are being Collated digit by digit to signify through SOURCE 25 where both
words agree to the extent of having 'ones' in corresponding digit positions.

Example 19.
To select out the bottom ten digits from the word in TS16, proceed as follows.

1 6 - 1 4 TS16 sent to TS14
(P̂ - q) - 15 10 consecutive COLLATE digits go to TS15

2 5 - 1 6 Select bottom 10 digits.
Example 20.
TS16 contains a number in 4 - bit binary coded decimal. To search each character ii

turn to find zeros and count them in TS13· Suppose the number is 9307, given in TS1 6 by
1110 0000 1100 1001 0000 0000 0000 0000

7 0 3 9

P1 “ p4 P5 " p8 P9 “ P12 etc*
Our task is to select each group of four digits in the word, adding one in TS13 each time
a zero character is found.

-3 .0 6 -

Example 21.
To test if the word in TS15 has a P ^ present write

3.8 SOURCE 26 NOT EQUIVALENT TS14 sfs TS15
This is another SOURCE which emits a word composed of a mixture of the two words in

?S14 and TS15· SOURCE 26 provides a word which has ones in those digit positions where the
ligits of TS14 and TS15 are different, i.e. where one is zero and the other is one and vice
rersa. The zeros in SOURCE 26 occur in those positions where the digits of TS14 and TS15
.re both zero or both one.

PCS2

The results obtained from SOURCE 26 may be seen from the two standard patterns in TS14 and
TS15

TS14 0101
TS15 0011
S 26 0110

T his function i s known as the NOT EQUIVALENT fun ction though read ers with knowledge o f

lo g ic a l a lge b ra w ill recognise the EXCIAJSIVE - 1 OR1.

Example 22.

To obtain the 'not' word from the word in TS16 (Remember from Lecture 1. that the 'not·
or inverse of a binary number x is x, a word having zeros in place of ones in x and ones
in place of zeros).
The instructions are

1 6 - 1 4 x sent to TS14
31 - 15 "all ones" to TS15
2 6 - 1 3 x sent to TS13

Example 23.
To test if the numbers in 8g and are equal

" ,4lt TS uL

~1s - if 7S <uwi- t s tff

λλΛΛ.Ογ*··~(

Example 24.
To obtain in TS16 the INCIUSIVE OR combination of the words in TS15 and TS14·

The inclusive OR word is a word which has ones where either or both words in TS15 and
TS14 have ones.

Since S25 gives ones where both have ones and S26 has one where either has ones and
the other zeros we add these together

x - 14 x sent to 14
y - 15 y sent to 15
25 - 1 3 Common 'ones· to 13
26 - 25 ones in either but not the other added
1 3 - 1 6 Result to TS16.

Example 25.
To examine the P - P. digits of the word in TS16 and if these are equal to 7 to add

1 4
them to the contents of TSi3 otherwise to add the contents of TS15 to TS13«

-3.07-

\

DPCS2

Here we need both S2p and 326, the former to select and the latter to compare.
/6 - t$ τε to rs /5

^ — φ) — CoΛΑ. ^ 7"ί"
— /</■ Ji***i·

(β-a) - IS 1C, a*~A~ ** TS tS

2.1, — x f i A v t ,P -l 4JJjttAZ~A etifrv lZ

,̂ x 4 A****. Λ-Ϊ 7 P, ?
* No

(+-15 15-15

SOURCES 23« 24. 25 and 26 are available in every minor cycle of machine operation.
3.9 D24 DESTINATION TRIGGERS.

It will have become apparent that in all SOURCES and destinations so far described each
SOURCE emits a word of 32 digits and each destination receives a word of 32 digits. In fact
information in the form of a DEUCE word flows from the SOURCE to the DESTINATION. There are
a number of Control instructions which must be performed on Digital Computers which do not
necessitate the transfer of word information. Executive commands such as "Start the Reader",
"CLEAR THE O.S." etc, are typical of such instructions. Because the DEUCE is limited to 32
SOURCES and 32 DESTINATIONS and because the number of necessary instructions is greater than
can be accommodated in these combinations, use is made of a special device. This is D24.

D24 is a common trigger destination. Whenever D24 is used one of 32 special
control circuits is operated to initiate a control instruction. Which particular control
circuit is operated depends on the SOURCE number associated with D24. We have in effect a
separate order code for Control instructions associated with D24.
For example, if we write

9 - 2 4
this does not mean "Send one of the words in DL9 to Destination 24", it means "Operate
Control circuit No. 9"· Here is the list of the first 12 control instructions. Most of the *
others are concerned with Paper Tape or Magnetic Tape and are given later.

0 - 24 Start Multiplication
1 - 24 Start Division

* 2 - 24 Send TIL to D28
3 - 24 Put TCA on
4 - 24 Put TCB off
5 - 24 Put TCB on
6 - 24 Clear the alarm
7 - 24 Sound the alarm
8 - 24 Clear the O.S.
9 - 24 Clear either or both READER AND PUNCH
1 0 - 2 4 Start the PUNCH
11 - 24 not used
1 2 - 2 4 Start the Reader.

* TIL is a signal which indicates that the last row of a card has passed the reading
(INPUT) or punching position (OUTPUT) of the READER OR PUNCH respectively. Further
explanation of TIL is given later.

-3 .0 8 -

TCA and TCB w ill be explained l a t e r in th is le c tu re and the operations o f READING and
PUNCHING w ill be explained in Lecture 8 .

The alarm i s a buzzer mounted on the contro l pan el. When i t i s sounded (u su a lly to c a l l
the operators a tten tio n to an e rror) i t i s put on by an in stru c tio n 7 - 2 4 and i t may be put

o f f by an in stru c tio n 6 - 24.

8 - 24, "Clear the Output Staticisor" cancels ai$r previous D29 instruction and is the special
instruction referred to in Section 3.3.
3 .10 TRIGGER CIRCUIT A T.C.A.

This con tro l f a c i l i t y connects TS16 and DL10 in a sp e c ia l way. Normally TS16 can sto re
one word and when requested to do so S16 em its whatever word i s stored in TS1 6 .

When TCA i s ON, however, TS16 can not sto re any inform ation because i t s c irc u la t io n ,
loop i s broken. A ll the worde in DL10 flow su cce ss iv e ly through TS16 and 316 a c ts a s an

echo o f S 10.

In minor cycle 9 fo r example, the word a v a ila b le from DL10 i s 10^. The word av a ila b le
from TS16 (with TCA ON) i s 10q .

We th erefo re define S 1 6 , (TCA ON) a s em itting the contents o f DL10 delayed one word

tim e.

The follow ing diagrams may be h e lp fu l in ap p rec ia tin g the fun ction o f TCA.

___ S/o
--- ^ ---.-- 3> L. IO — ----^ --------

________ ClRcoL./\Jio_f4̂ W H ___f
~_________~~~ TCA o p p

hit 1 , — s,fe
-----■"---- — --- ,--- TS l b — ------------- --------

TCA i ----------------- J ,

Dio __________________________________ -______ 5,0
---- ---- 1— 2>u ΙΟ I ' 'I ---------------- --- ----------- |

'--- ----- -------- -- ~ “ ~ ' TcA oN
f ~ * S it,h't l ----------

----- / ------ \------ TS lb ------------------- ^ ------
TCA ---------------- 1

No CiftCtfnAfioiV PATH ·

With TCA o f f , DL10 and TS16 are sep arate storage ta n k s . With TCA ON TS16 has been connected
l ik e a one word caboose behind the 32 word tr a in o f DL10. I t s c ir c u la t io n path i s broken
and TS16 merely a c ts as a one word delay on a l l the .,ords sto red in DL10.

Example 26.

To transfer 10, Λ to 9,, in one instruction. It will be recollected that the Rules of10 11
T ran sfer fo rb id operations o f the form

1010 “ 911 .

As these minor cy c le s are only one apart and only because the e a r l ie r one i s to be tran sferred

to the la t e r one we can do th is in one t r a n s fe r i f TCA i s ON by

16 — 9 (m.c. 11) TCA ON.
The most u se fu l fea tu re o f TCA i s to s h i f t words in DL10.

- 3 . 0 9 -

Example 27.

To rep lace the words in 10^ by the words from 1 i . e . move m.c. 0-5 down one
p lace in DL10, lo s in g m.c. 6 a lto g eth er

3 - 2 4 Put TCA ON.
16 - 10 (m .c. 1 - 6) Puts (out o f S 16) in I0^_g

Example 28.

To move a l l the minor cy cles o f DL10 one p lace

3 - 24 Put TCA ON

16 - lO02mc)Delay each word in DL10 and send the delayed words to

DL10.

When TCA i s ON TS16 does not s to re inform ation. I t w ill rev ert to a storage p o s it io n and

TCA w ill be put o f f when any tr a n s fe r i s made to Dl6.

X - 16 Puts TCA o f f

Where X i s any SOURCE. The inform ation from SOURCE X p a sse s in to TS16 and i s stored there in

the normal way.

3.11 TCB, TRIGGER CIRCUIT B.

A dditions, su b tractio n s and downward s h i f t s may be performed in DS21 and as th is i s a

two word storage tank i t i s known as the "Long Accumulator". I t has been s ta te d th at words
in DEUCE have 32 d ig i t s with P̂ as the le a s t s ig n if ic a n t and P ^ as th esign d ig i t . 32 d ig i t s
are o ften su f f ic ie n t fo r most purposes but there are occasions when i t i s necessary to double
the word length and work with worlds o f 64 d ig i t s .

To work with double length words i t i s necessary to be ab le to add them, su b trac t them
and s h i f t them e ith e r up or down. This can be done in DS21.

Any double length word c o n s is t s o f two h a lv es , a l e s s s ig n if ic a n t 32 d ig i t word and a

more s ig n if ic a n t word. By convention the word in an Even sto rag e p o s it io n o f a p a ir i s the
l e s s s ig n if ic a n t h a l f and the word in the ODD storage p o s it io n 13 the more s ig n if ic a n t .

Furthermore, a 64 d ig i t word only needs one s ign d ig i t and th is i s the P^ d ig i t o f the
ODD minor cycle word. When words are trea te d as double-lengths the P ^ d ig i t o f the l e s s
s ig n if ic a n t word i s ju s t another d ig i t .

When TCB i s OFF a l l words in DS2| are trea ted a s double length numbers. In add ition s

and su b trac tio n s, carry d ig i t s can p a ss from 212 t ° 21^ and in s h i f t operation s only the s ig n
d ig i t o f 21^ i s copied (See SOURCE 23 fo r comparison).

When TCB i s ON, however, DS21 i s trea te d as a two word s to r e . There are now sign
d ig i t s P^2 in 21^ fo r the word in the EVEN h a lf and P^2 in 21^ fo r the word in the ODD h a lf .

Numbers added together in 212 do not cause carry propagation to 21^.

3 .12 SOURCE 22 SHIFT DOWN IN DS21

SOURCE 22 with resp ec t to DS21 corresponds to SOURCE 23 with resp ec t to TS14· SOURCE 22
em its a word which i s the word in DS21 sh ifte d down one p la c e .

NOTE For TCB OFF, the in stru c tio n

22 -20 ^2 2
w ill take the word in 21 sh if te d down one p la c e , and t r a n s fe r i t to DS202 ·
Since TCB i s OFF, (P^) EVEN i s NOT a s ign d ig i t and i s NOT copied . The

P^2 p o s it io n o f the word from S222 i s occupied by the P ̂ d ig i t o f 21^ .

- 3 .1 0

The in stru c tio n

22 - 20 , (TCB OFF)

tra n s fe r s a c o y o f the word in 21 , sh if te d down one p lace to DS20,. (P „) i s a s ig n
* 3 * * ODD

d ig i t and w il l be copied in the word em itted by 22^.

The in stru c tio n

22 - 20 (d) (TCB OFF) (e ,o)

tr a n s fe r s one p lace l e f t sh if te d copies o f both words in 21 to DS20. Again only the s ign

d ig i t o f 213 i s copied .

With TCB ON, the in stru c tio n

222- 202 ;
t r a n s fe r s the one p lace sh if te d down copy o f DS21„ to DS20_. Now however (P ,_) i s

** -3 EVEN
trea te d as the s ig n d ig i t o f 21 ^ and a copy o f th is d ig i t i s made in any t r a n s fe r from S22.

S im ilar ly

2 2 y 20^

s h i f t s down the content o f 21^ one p lace and tr a n s fe r s the r e s u lt to 20^. Note th a t the

sh if te d copy o f 213 appears in 20^ riot in 21^. This can be done by

223- 213.
Example 29.

To s h i f t the double length number in DS21 four p la c e s to the l e f t . Since 23 - 14 (4 m .c.)
w il l s h i f t the s in g le length word in TS14 four p la c e s l e f t we may be tempted to in fe r th at

22 - 21 (4 m .c·) (e ,o)

w ill perform a corresponding operation in DS21. This i s not so however, f o r i t takes 2 m .c.

to rep lace both words in DS21 and we need to rep lace both words fou r tim es, s h if t in g down

each tim e.
The in s tru c tio n i s

22 - 21 (8 m .c.) (e ,o)

with an 8 m.c. t r a n s fe r to s h i f t 4 p la c e s .

3 .13 D22. ADD INTO DS21.

D23. SUBTRACT FROM DS21

For add ition s and su b tractio n s in DS21, D22 and D23 have the same e f f e c t as D25 and

D26 in TS13.

Words sen t to D22 are added to the approp riate word in DS21. Words sen t to D23 are
subtracted from the appropriate word in DS21. D22 and D23 may be used in the s in g le length

(TCB ON) mode or the double length (TCB OFF) mode.

With TCB ON the words in TS14 and TS15 “'ey be added in e ith e r DS21 g , DS213 or TS13
a s follow s

(a) In 212 14 - 2lg

15 - 222
R esu lt in 21g

In 21 ^ 14 - 215

15 - 223
R esult in 213

-3.11-

i

In TS13 14 - 13
15 - 25
R esult in TS13·

In a s im ila r manner D23 perm its s in g le length su b tractio n s to occur in e ith e r 2 lg

using D23g or 21^ u sin g D23^. With TCB OFF however, D22 and D23 d eal with double length

ad d itio n s and su b trac tio n s .

Example 30«

To add the double length number in DS2O2 ^ to the double length number in DS192 ^ ·

V/e w rite
20 - 21 (d)

19 - 22 (d) (e ,o)
Result in DS21_ , .^>3

Example 31 .

To su b trac t the double length number in DS19£ 3 from the double lenth number in DSROg ̂

the in stru c tio n s are

20 - 21 (d)
19 - 23 (d) (e ,o)

Example 32.

To s h i f t up the double length number in DS21 fou r p la c e s . This may be done by
su cce ssiv e ad d ition s o f the number to i t s e l f in DS21_ , . One long in stru c tio n fo r 8 m .c.^>3
i s requ ired

21 - 22 (8 m .c.) (e ,o)

FOUR IMPORTANT POINTS.

(A) FOR DOUBLE LENGTH WORKING TCB has not been shown to be put OFF and fo r s in g le
length working TCB has not been shown to be put ON. This i s because i t i s the duty o f every

programmer to know the S ta te o f TCB a t each po in t o f h is programme. I f TCB i s requ ired ON
and i s a lready ON i t i s not necessary to put i t ON again . I f TCB i s ON but operations are

to be performed with TCB OFF then
(

4 - 2 4

must precede the double length working in s tru c tio n s .

(fi) 0 - 2 4 START A MULTIPLICATION a lso PUTS TCB OFF AUTOMATICALLY

(c) 1 - 24 START A DIVISION a lso PUTS TCB ON AUTOMATICALLY.

(D) ALL TRANSFERS TO D22, D23 and from S22 fo r more than one minor cycle must occur
i n the order EVEN minor cycle f i r s t . ODD minor cycle second, and so ON.
There i s no programmer using DEUCE who has not made th is m istake a t some time or o th er. The
r e su lt in g e rro rs can be very d i f f i c u l t to fin d and a l l D22, D23 and S22 long tr a n sfe r s should
have (e ,o) w ritten on the flow diagram in an attempt to avoid t h i s , probably the g re a te s t
DEUCE p i t f a l l o f a l l .

3 .1 4 EXTENDED ADDITION AND SUBTRACTION.

One f a c i l i t y b u i l t in to the DEUCE i s the a b i l i t y to convert any s in g le length word sent
to D22g or D23g in to a co rre c tly signed double length word.

- 3 . 1 2 -

For example, if the single length word in TS15 is
101011.............1100

The correct double length equivalent is
101011................1100 0000.................0000.

For a negative single length word in DEUCE such as
111011...........0111

with P^2 present as shown, the double length word is
111011........ 0111 11111111....... 111111

The sign digit must be propagated correctly up to the P/·. ((P*9)) position.
“ *■ ODD

If therefore single length words sent to D22g or D23g to be converted to double
length automatically the computer must recognise whether the single length numbers are
positive or negative and continue the transfer for a further word time with a word which is
either 32 zeros for positive numbers or 32 ones for negative numbers. This is exactly what
happens if a transfer is made to D22g or D23g for TCB OFF. With TCB ON however numbers are
not treated as double length and no extension occurs.
The rule is as follows:-
Any transfer ending in an EVEN minor cycle to D22 or D23 with TCB OFF will be extended for a
further minor cycle* The word transferred in the extra minor cycle will be all zeros if the
last digit sent to D22 or D23 is zero and will be all ones if the last digit sent to D22 or
D23 is one.

It should be noted that any transfer ending in an EVEN minor circle can be just one
minor cycle or the last minor cycle of a double or long transfer

-3.13-

4

CLASS EXERCISES,
1 · The word on the I.D. represents

AP1 + BPg + CP^ + PPgj (A, B, C ana D are positive integers)
Write instructions to read this into DEUCE and separate out the sections placing

(A + D) P1 in TS13.
B P1 in TS16.
CP, in 2g.

HINT. Use SOURCE 25 to COLLATE.
SOURCE 23 to shift.

2. Write instructions to examine whether P32 is on the I.D. and if so stop the DEUCE
to read the I.D. into TS16. If P ^ is not present, place P ^ in TS15·
NOTE. Place a«.X on the right of the instruction at which the machine must stop.
3. Write instructions to invert the ones and zeros of the word in 19g (i.e. form the
'not' word).
4. Write instructions to test if the digits in P? to P1g of the word in 21^ are 1001
(i.e. represent 9 in binary coded decimal).
5. Write instructions to invert the digits P ^ of the word in TS16 preserving the rest
of the word intact.
6. Write instructions to test if P^_^ of the two words in DS19 are the same or different.
7. Form digits in one word A marking the positions where zero exist in P^, P^, P^, P ^
of another word Ξ.

P P P P 5 9 13 17
e.g. 1000 0110 1000 0110 1000 ... B

0000 1000 0000 1000 0000 ... A
8. Write two different sets of instructions to test if two words are the same. Use TS13
in the first set link not in the second.
9* Write a small programme to light successive P digit lamps on the O.P.S.
10. Write a small programme to light successive P digit lamps on the O.P.S. at a rate
determined by a digit set on the I.D.
HUNT. Use the digit on the I.D. as a counter. light a lamp when the counter is zero,

next reset the counter and continue. Clear the O.P.S. when all lamps are lit.
11. Write instructions to test if 19g Is zero. If it is write all ones in 19g> ^ non
zero clear 192· What technique does this illustrate?
12. Write instructions to test if the top two digits of TS14 are 00, 10, 01 or 11 leading
out to exits A, B, C, D for each case.
13. Repeat 12 obeying the following instructions at A, B, C, D.

A, Sound the Alarm.
B, Clear the Alarm.
C, Call the Reader.
D, Call the Punch.

14. What does 30 - 29 do?
15* T.C.B, is ON. Write instructions to the double length content of DS20 to DS19
placing the result in 5., Q 11·

-3.14-

DPCS2

•3.15-
16. T.C.B. is OFF. Write the instructions to shift NPgg in DS21g to NP^ in 21^.
17< Subtract the contents of 18^ from TS14 and 18^ from TS15 using DS21. T.C.B. is OFT1
originally.
18. The number in 21 g is originally held to 30 b.p. Write the instructions to obtain a
copy of the number to 20 b.p. in TS13»

3

DPCS2

-3.^6-
EXERCISE SOLUTIONS

1. 0 - 1 4

- 15 *1-8
2 5 - 1 3 A
23 - 14 (8 m .c.)
2 5 - 1 6 B
23 - 14 (8 m .c.)
2 5 - 2g C
23 - 14 (8 nuc.)
1 4 - 2 5 A + D

2. 0 - 2 7

+/ \ "
2 8 - 1 4 0 - 16X
2 4 - 1 4 (14 m .c.)
14 - 15

3. 192 - 14
31 - 15
26 - 192

4 . 21j - 14

- 15 P9-12
25 - 14 C o lla te out P ^ g f i e l d on ly .

- 1 5 *9 + P12
26 - 28

° / v
YES NO

5. 16 - 14

" 15 * 1 -4
26 - 16

6 . 192 - 14

’ 15 P5-9
25 - 13
192 - 14
25 - 26
13 - 28

YES NO

7 . - 14 B
- 1 5 f 5 + p9 * p 1 3 + p 17

25 - 14
26 — A

8 . - 13 A - 14 A
- 26 B - 15 B

13 - 28 26 - 28
θ / \ | ° / \ X

9. _27 - 14
14" - 29
2 4 - 1 4
14 - 28

.0?------' I
II o

EPCS2

f

■3,17'

14« Nothing. It superinposes zeros on the word at present appearing on the O.P.S. lights
but does not clear it*
15. 4 - 2 4

20 - 21 (d) (e, 0)
1 9 - 2 2 (d) (e, 0)
21 - 510 (a)

16. 21 - 22 (8 m.o. e, o)
17. 14 - 212

15 - 21 j
5 - 2 4

180- 23 (d)
18. 21g- 14

23 - 14 (9 m.c.) Shift to 21 b.p.
14-13 Copy into TS13.
23 - 26 Subtract 5· of TS14 rounded down to give correctly rounded

result.

DPCS2

Illustrates MARKER technique*

4

4.0 MULTIPLICATION.
All digital machines work in terms of ’ integers, and "all digital machines" includes

desk calculators as well as high' speed electronic computers. On desk machines the integers
are in -the decimal scile of notation, whereas most high speed computers use the binary
scfele. The' processes involved in multiplying two binary numbers on DEUCE are the same in
principle as the processes involved in multiplying two numbers on a desk machine such as a
FACIT or BRUNSVIGA. The difficulty encountered by most programmers at their first introduction
to the DEUCE multiplier arises from the fact that the operands and the multiplication
process are hidden from view whereas they can be seen on a desk machine.
4.1 DESK CALCULATOR MULTIPLICATION.

To multiply 501 by 25 on a desk calculator the first number 501 is set in the "set up"
register, with the 1 in the least significant digit position. The handle is turned until
25 appears in the COUNTING (OR MULTIPLIER) REGISTER with the 5 in least significant digit
position. The product 12525 appears in the Product register with the 5 units in the least
significant place. If the input numbers are positioned with their least significant digits
in the least significant digit positions of the respective registers the product register will
hold the product positioned with the least significant digit in the least significant digit
position of the register.

Nov/ let us consider multiplication of non-integers on a desk machine which can handle
integers only.

To multiply
75.346 by 53.42 we multiply
75346 by 5342 to give 402498332.

As the original numbers have a total of 5 decimal places the result is adjusted by inserting
a decimal point five places from the least significant end to give

4024.98332
What, in fact does this process amount to?

The original numbers are changed to integers
75*346 becomes 75*346 x 102̂53*42 becomes 53*42 x 10

3 2 5The integers are multiplied together and the result is too large by a factor of 10 x 10 = 10
This may be generalised as follows:

YJhen a number X · with p decimal places is multiplied by a number Y with q decimal places
the integer product is(x . 10b)x^y x 10*^= x.y . 10p+q, representing the true product xy
which has (p+q) decimal places.
4.2 BINARY MULTIPLICATION.

Any non-integer x having p binary places is represented in DEUCE as the integer x.2?
Example 1.

= ... 101010101010101010101010101010·
ixL3· held in DEUCE to 15 binary places would appear as

fO i 010101010101OOOOOOOOOOOOGOOOOOl

If a binary point could be indicated it would be placed between P̂ j. and as shown by the
arrow. The integer relative to is the integral part of -5 x 21 , which may be checked

LECTURE 4.

DPCS2

by moving the binary point 15 places to the left
^ x 215 = 1010101010101010101,01010101010101010

Two numbers, x with p binary places and y with q binary places, are multiplied as integers
x.2p and y.2q.

The product xy . 2*>+% s an integer representing xy to (p+q) binary places· The
product of two 10 digit decimal numbers produces a 20 digit number, and similarly
multiplication of two 32 digit binary numbers in DEUCE produces a 64 digit product (a double
length number) in DS21Q ,·

After multiplying two binary non-integers, each having 30 binary places, the binary
product which has 60 binary places is double length. To obtain a single length number
it is necessary to discard 32 digits from the bottom end. This is known as truncation.
If the product is truncated without any other intervening action the resulting product
(single length) will have 60-32 = 28 binary places. If the desired result is a number also
having 30 b.p. after truncation the original product must be shifted up two placed (giving 62)
before truncation takes place to produce 62-32 = 30 binary places.

2· U ------------------ 3 „ 4 --------------------- *| <
1̂ th (30 b.p.) = I 011001100110011001100110011000.00

10th x 10th = i3oth to 60 b-p·
p0101111 000101 10101111000101000000-0000
4------------ fcoty--------------- ----»-

After truncation.
— ~th (28 d.p.) |'C1 10101111000101000000 0000100 -a------------- -i% ------------------ »

To obtain 30 b.p. in the single length result the product should be moved up two plaoes*
This would produce

101011 11000101 ... 1010111100010100000.001
^ · ---- · Ιλ ·■·— ^ —

which after truncation would give
| 0101 . . . 10101111000101000000.00
- ■ 3ob)> - =+

There is one other process which must be performed if balanced errors are to be produced.
When two five digit decimal numbers are multiplied, each having five decimal places the
result has ten decimal places.

e.g. 0.12345 x 0.41235
= 0.0509046075

If we drop the last five figures (truncate), the number remaining is accurate to five figures
= 0.05090

If the original numbers were
0.12345 x 0.32375

giving a product

0.0399669375
the truncated result 0.03996 would not be a true five figure representation of the product
as the highest figure of those discarded is a 6.

It is necessary to ROUND-OFF to the correct number of figures, in this case five,
before truncating to produce

0.03997

-4 .0 2 -

DPCS2

Viorking in binary is no excuse far not following normal confutation practice and it is
usual to round-off the double length product before truncating. To round off in binary we add
a one in the highest-digit position of those discarded. If this digit is a one, the next
higher digit is increased by one carried up, otherwise the truncated number is unchanged.
Multiplication of Positive Integers.

To form the product of two positive integers X and Y the rules are
(a) Send X to TS16
(b) Send Y to DS213
(c) C lear DS212
(d) Start Multiplication in an ODD MINOR cycle using the instruction 0-24·

The multiplication lasts for 65 minor cycles and throughout this time DS21 and TS16 must
not be used for other purposes. Y/hen the programmer has aquired a knowledge of advanced
programming technique he may use DS21 and TS16 during 0-24 operations but the beginner is not
advised to do so.
The product XY is left in DS21g ̂with the least significant digit of XY in the position
of 21g (the less significant half).

The instructions required are
X - 16 Send X to TS16
Y - 21^ Send Y to DS21^

30 - 21 C lear 21 g
0 - ?h (ODD) S ta r t m u ltip lica tio n

1 - 1 Waste in stru c tio n
21 - 20 (d) XY sen t to DS20.

The waste instruction is a dummy which is necessary to waste time until 65 minor cycles have
elapsed between the commencement of multiplication by 0-24 and the extraction of the result
by 21-20 (d).
Multiplication of Positive Non-Integers.

M u ltip lica tio n o f two s in g le length numbers r e s u l t s in a double length product which i s

u su a lly truncated to s in g le le n g th . Truncation only occurs a f t e r th e double len g th product
i s sh if te d and rounded o f f to g iv e the d esired number o f b in ary p la c e s in the s in g le length

r e s u l t ·

I f the f a c to r s to be m u ltip lied are x and y w ith x to p b in ary p lao es represen ted a s
the in te g e r X = x .2 ^ and y to q bin ary p la c e s represented a s Y = y .2 ^ and i f the r e s u l t
xy i s requ ired to r b in ary p la c e s , the f in a l s in g le len gth number a f t e r s h i f t and trun cationX*
w il l be represented a s XY.2 .

After multiplication the result is
XY . 23̂

A fter a s h i f t up o f s p la c e s the r e s u l t i s

XY . 2 ^ 8
A fter trun cation we lo se 32 p la c e s g iv in g

XY . 2P-“1+s-32

and we req u ire

p + q + s - 3 2 = r
therefore s = 3 2 + r - p - q

-4.03-

DPCS2

To obtain εη upward shift of s places in DS21 we use the instruction
21 - 22 (2s m.c.) (e, o)

T.C.B. must be OFF (as it will be after multiplication) and (e. o) has been included as a
reminder that the transfer must end in an odd minor cycle.

When the double length product has been shifted up end before the bottom 32 digits
are discarded, the top digit of the discarded word is Ρ^2 in 21^. To round off one might
assume that we use

29 - 22^
This is not so however, for SOURCE 29 looks like a negative number transferred to 22g in
an even minor cycle. By the rules of EXTENDED ADDITION this will cause 32 copies of the
sign digit to be added in 22^·

To overcome this difficulty we round off by subtracting a in 21^.
The instruction

29 - 23g
rounds off the single length number in 21^ and the instruction

21 - 230 2 2
rounds off 21^ and clears 212> a useful feature in continued multiplication.
To multiply two non-integers the instructions are the same as for integers with the addition
of the extra shift and round off instructions

x -16 x = X.215 TS16
y - 213 y = Y.2q 213
30 - 212 Clear 21g
0 - 24 MULT (ODD m.c.)
1 - 1 Waste instruction
21 - 22 (2s m.c.) e, o Shift-up s places.
29 - 232 Round off
Result in 213 xy to (p+q-32+S) b.p.

Multiplication of Signed Numbers.
The multiplier treats all numbers as positive integers, which means that a sign

correction must be applied when negative numbers are included in the factors of multiplication.
We may work out the correction rule as follows:

Both factors positive.
Factors X, Y Multiplier INPUTS X, Y
Product in DS210 , XY
Required product XY
Correction NONE.

One Factor Negative.
Factors, X, -Y Multiplier inputs X, 2^2-Y
Product in DS210 , X (232 - Y)2*3 62«.Required product -XY signed double length = 2 - XY
Correction required - 23¾ = 232 (232- X) * -232X

Both Factors Negative.
Factors -X, -Y Multiplier inputs 232 - X, δ32- Y.
Product in DS21„ , (2 ¾ X) (2 ¾ Y)

2,3 „ 2* - 2 ¾ - 2 * 1 + 1 1
Correction required - 232 (-X) - 23 (-Y)

•npr.es o

-4.04-

-4.C5-
V/hen only one factor is negative the correction needed is that of subtracting the

other factor shifted up 32 places· V/hen both factors are negative we must subtract both
factors shifted up 32 places. These observations may be combined in the correction rule.
"If either factor X3 negative, subtract the other factor from the top half of the product
in 21."---- 3-

Most often a programmer who requires multiplication of signed numbers will use one of
the many multiplication subroutines which exist in the DEUCE Library of Subroutines· In
these subroutines, signs and binary place shifts are dealt with. If it is necessary for a
programmer to write his own sign corrected multiplication routine the instructions required
are not likely to be different from those given below which form the basis of most
multiplication subroutines·

Example·
To obtain the signed product of two factors stored in TS14 and TS16*
NOTE One factor is already in TS16*

3o - Clt+ Λ I ' j,
Ilf. - I”*" f * .r fm fc, X IJ

* ο - XIf. (o A d) X |-aλΑγ M vi. i i p l ic a t io n

lif- — X] Ij I* MJA*·*/* ?
flo . .—4 — . yes; f̂ eA-n

3 · ’ i» TS '5
— " "" N o : CL· . «Λ T f /3

f t -2-7 I s f * t A ^

■l· — —■— YB S : (KeLA offc*s jAfrfw
f - l to T S ' 5

-— —·—" n o Λ·*»·.3

^ ~ ^^3 XiJvK «,β* <Kwue*iv»»
/ \ H 3

I I - 1 7 . I s (e , o) - , , ,

^ ~ ^ χ Κ ολλλ*Α. o f f im*.A

tU tvK χ ι χ

X The sign correction instruction 13-23^ oust not be executed less than 65 minor cycles
after multiplication starts. The time between starting the multiplication and making the
correction can be usefully occupied by the instructions which sort out the signs of the
factors and prepare the correction.

Example·
Two numbers, each less than icb are to be multiplied and the result placed in 8^.

The numbers are known to be positive integers and are stored originally in 7c end 7. ,·8 O ' ?The result will be less than 10 and as this is single length the product will not extend
beyond 212·

DPCS2

7C “ 21, one factor to 21,5 3 3
- 16 other factor to TS16

30 - 212 Clear 212
0 - 24 (odd)Start MULT
1 - 1 Waste time
212 - 16
16 - 8r Transfer product to 8_

5 5
Example.
Two numbers x (30 b.p.) and y (30 b.p.) are to be multiplied and the product obtained

also to 30 b.p.
x - 16 x - » · 16

y - 2i 3 y —3- 2i 3
30 - 212 Clear 212
0 - 24 (odd) Start mult
1 - 1 to give 60 b.p.

21 - 22 (4 m.c.) Shift to give 62 b.p.
Round off and clear 21 g

212 - 23g leaving 30 b.p. in 21^
Result xy
(30 b.p.) in
21, with 210 5 2
clear.

Example.
In one small section of a programme the area of circles is calculated. The values of

radius range up to 2 inches and the radius is held to 29 b.p. ΊΓ is held to 29 b.p.
and the final result is required to as many b.p. as possible.

NOTES (a) Since Π = 3.14159 ... has an integral part 3 it can not be held
to more than 29 b.p. for one digit (P^g) is required for the sign
and two digits P ^ , P^q are required to accommodate the integer 3· This
becomes 32-3 = 29 digits available for the fractional part .14159etc.

(b) Tiie maximum value of radius is 2 therefore maximum area is 12.5
sq. inches. To accommodate an integer 12 we need 4 digits which, allowing
one for the sign, leaves 32-5 = 27 binary places for the fractional
part.

2(c) The partial result r can be held to 28 binary places.

-4.06-

DPCS2

fne instructlone are
r - 16 Radius to TS16
16 - 21^ and to 21^
30 - 212 Clear 21g
0 - 24 (odd) Start suit to give
1 - 1 58 b.p.
21 - 22 (4 m.o.) (β·ο·) Shift up to give 60 * 32 + 28 b.p.
212 “ 23g Round off to 28 b.p. and clear 21^
ΤΓ - 16 r is ncsr in 21,

j 20 - 2 4 (odd) Start to form 7Γ r
1 - 1 with 29 + 28 = 57 b.p.
21 - 22 (4) (e,o) Shift up to give 59 B 32 + 27 b.p.
21 - 232 Round off to 27 b.p· and clear 21 g
Result TTr2 (27 b.p·)
in 21.j
with 212 clear.

- 4.07-

DPCS2

CLASS EXERCISES.
1, Write the instructions to multiply the two positive integers in TS15 and TS16
placing the result in TS13 £ the original numbers are each less than 10^J
2, Write the instructions to multiply the signed integers in TS15 and TS16 placing
the result in DS19* The result must he signed, double length,
3, The number in TS15 represents the radius of a sphere to 16 b.p. Write the instructions
to calculate 4 -fC r^· All partial products may be held to 16 b.p, £ΐτ is held to 16 b.p,
and 4 is held as an Integer x
Trap. Is the 4 really necessary?
4, Write the instructions to form x*1 to 30 b.p# given x to 30 b»p, and a counter n,
[x 1]J. Each partial product should be correctly rounded off,
5, Calculate by multiplying x by |x < 1000 held to 20 b.p.J 2 ^ x ^qoO
available as a multiplier. The result is required to 30 b.p.

-4.08-

-4·υ9-
EXERCISE SOLUTIONS.

1. 15 - 21 j
30 - 212
0 - 24 (odd m.c*)
1 - 1 waste time·
212- 13

2· 15 - 21j
30 - 212
0 - 2 4
15-27

* / \ -
30 - 13 16 - 13

16 - 27

+/ V
1 - 1 1 5 - 2 5

13 - 23? after mult, finished»
21 - 19 (2 m.c.)

3» 15 - 1 6 r (16 b.p·)
15 - 21 ̂
3° - 212
0 - 24 (odd) Mult, gives r (32 b.p.)
1 - 1 waste time·

21 - 22 (32 m.c·) shift to IS b.p· (start shift in even m.c.)
21 - 23g clear 21g end round off 21^ to 16 b.p·

- 16 ΤΓ (16 b.p·)
Ο - 2 4 (odd m.c.) gives If r to 32 b.p·
1 - 1 waste time. 221 - 22 (4 nuc·) multiply by 4 by shifting· Given 4 -tf r to

32 b.p· double length·
4· - 16 x (30 b.p·)

16 - 21j
30 - 212 clear 212«

- 13 a (0 b.p.)
27 - 26 (n - 1)
15-28 z
^ | ~ ~ Result in 21^ to 30 b.p*
0 - 24 (odd m.c·)
1 - 1 waste time·
21 - 22 (4 m.c· e, o) shift to 62 b.p· double length·

_____ 21 - 23g clear 21 g and round off to 30 b.p·
5· - 16 x. (20 b.p·)

- 213 1/1000 (40 b.p.)
30 - 212 Clear 21g
0 - 24 (odd m*c.)
1 - 1 waste time. Mult, gives Z/1000 to 6θ b.p. double length.

21 - 22 (4 m»c. e, o) X/1000 (62 b.p·)
29 “ 232 round off to single length, 30 b.p.
21 y result from 21^

DPCS2

5

LBCTURE 5.
5.0 DIVISION.

One arithmetic process on DEUCE which causes a beginner trouble and makes even
experienced programmers proceed with caution is DIVISION using the automatic divider. The
action of this facility on DEUCE is entirely consistent with normal division practice in
the decimal scale, if the same initial conditions are postulated, so a preliminary study of
decimal division is indicated.
5.1 DECIMAL DIVISION.

If one integer, say 43 is divided by another integer, say 5» the result is 8 with 3
over.

i.e. DIVIDEND 43 (A) QUOTIENT 8 Q
DIVISOR 5 (B) RBIAIND1R 3 R
(less than
dividend)

or 43 = 8 * 5 + 3
A = Q x B + R

This is very simple and straightforward if the divisor "goes into" the dividend. If the
divisor is greater than the dividend matters are not as straightforward. If A (the DXVIDMD) =1
and B (the DIVIDEND) =7 we can write

^ = 0 and 1 Remainder
but we have not really progressed very far. We want to divide 1 by 7 and obtain a decimal
fraction as the quotient. Let us settle for five figure aocuraqy and proceed as at school

.14285
7) 1.0

30
28

20

lib
60

i
42

22
5

We plaoe a deoimal point after the 1, add a nought and proceed as if we are dividing 10 by 7»
This gives a remainder of 3 , so we add another nought and carry on until our required 5
figures have appeared in the quotient. The noughts added one at a time are underlined in
the example and the same aequenoe of quotient digits would be obtained if we first
multiplied the dividend by 10”* (beoause we require 5 figures) and oonvert the process to an
integer divisor

i.e. 105 x 1 » (14285) x 7 + 5eor ΙΟ'' x A a Q x B + R
Now we require k/B which is given by

k/B = Q/105 + — 5 (|)
and s 0.14285,1S.e. we put the decimal point in the right place.

105
If we required ten figures in the quotient this is equivalent to performing the division of

-5 .0 1 -

DFCS2

1010 A by B expressed in the equation

1010 A = Q B + R

Wien these p ro cesse s are ca rr ie d out using p en c il and paper or (w ithin lim its) on a

desk machine we are fre e to stop when we have enough f ig u r e s in the quotien t. I f the p ro cess
i s mechanised and made fu l ly autom atic we must decide th a t a l l d iv is io n s are performed to a
f ix e d nuniber o f p la c e s , say 10 fo r a decimal d iv is io n . This i s what we arrange to do an
DEUCE except th at the number system i s b in a iy and we s e t t l e fo r 31 b inary d i g i t s in the qu otien t·

5.2 BINARY DIVISION.
D ivisio n o f one b in aiy in te g e r by another, say 13 (1011) by 3 (n) g iv e s 4 (001) a s

quotient and 1 (l) a s rem ainder. The equation

A = QB + R

i s s t i l l v a l id and independent o f the sc a le o f n o tatio n .

I f we d iv id e 1 by 7 in b inary to produce a b in ary f r a c t io n , we proceed ju s t a s in

decimal

.001001001 L e a st s ig n if ic a n t d ig i t
111)1 .0 0 0 on the RIGHT

111

0 001000

111
1000

111

1

We appear to req u ire a g re a te r number o f added noughts to s t a r t w ith but th i s i s p e r fe c t ly

reaso n ab le , sin ce each nought corresponds to m ultiplying by 2 in b in ary .

For the 9 b inary f ig u r e s in the quotient we have used 9 e x tra noughts. This corresponds
9

to m ultip ly ing the o r ig in a l dividend by 2

i . e . 29A = QB + R

check A = 1 Q = 1001001 = 73
29= 512 R = 1

and 512 = 7 x 73 + 1

obtain ing a b in a iy f r a c t io n a l quotient with p b in a iy p la c e s corresponds to performing the
d iv is io n o f A by B to s a t i s f y

2PA = QB + R

The DEUCE autom atic d iv id er works to 31 b inary p lac e s and the formal r u le s governing the

dividend (A) d iv iso r (B) , quotient (q) and remainder (R) are s e t out below.

1 . A, B , Q and R a re in te g e r s .

2. |A| 'w |B|
3 . A and B can be o f e ith e r sign
4 . The quotient w il l be co rre c tly signed autom atically and t h i s and the remainder

are re la te d to A and B by the equations

231A = QB + R
with 0 $ R ^ B i f B > 0

B ^ R C O i f B < 0

DEUCE d iv is io n s are v a lid only when we d iv ide one in teger (A) by another in teger (B)
which i s num erically g re a te r than A. The fr a c t io n a l r e s u l t i s obtained in 21^ with 31 binary

p la c e s , i . e . the p o s it io n o f the b in a iy po in t i s between P ^ and P^g 2 1g .

-5.02-

DPCS2

To divide 3 by 5·

Result 3/5 to 31 b.p. in 212
f 1001001001001001C01.01

The integer in 210 is 251 Λ £ 5
Example 2.
To divide 5 by "*0.
Result = ̂ in 212 to 31 b.p.

The result is exact since 3/l0 is an exact binary fraction whereas 3/5 in the previous exarple
leads to a recurring binary fraction,

212 | o o oooooiTol
The integer in 21 is 231 . 5/l° = 251 . £ = 230

Example 3.
To divide 50 by 10.
We cannot use the automatic divider until the numbers are adjusted so that B is

greater than A. Let us shift our divisor 10 up 3 places (binary places) and so multiply
by 23 = 8. If new we divide 50 by 80 we shall obtain a result which is 8 times too small.
We adjust the position of the binary point in the final result.

qq - q = ^1.0 positioned in 21g as
O o o --------,-------------- 0 0 0 0 10 1*0w- ■■ --- 3lbb — — *·

= 8δ * 8» 30 we the binary point three places to the left giving 31 “3 = 28 binary
places with the integer '5* above the position of the binary point

Ο Ο O ----------- ------------- 000 0*1010
«-- --28l>)> — >

So the DEUCE can after all divide 50 by 10 and obtain 5 as the result. The quotient 5 nay
be positioned at some odd place in the register but it can be moved to the position in
212 by a left shift or, if T.C.B. is OFF, moved right into 21^, whichever is the more
convenient.
5.3 BINARY PLACES IN DIVISION.

The beginner is apt to think that the DEUCE divider is restricted because it can only
divide one integer A by a numerically larger integer B. Division of any number x, not
necessarily integral, by any other nunher can be performed if the process is carried out
in a methodical manner.

Suppose we have x to p binary places and y to q binary places and we wish to form —·
¥

In DEUCE we have X = 2*x
and Y e 2¾1
where X and Y are integers.
We must now consider whether Y is greater than X. If it is. then X and Y are already

in a form suitable for automatic division. In this case the result obtained in 212 is

1 - 23 1 !

" 251 <g>
. 231^ (Ϊ)

which is the quotient (¾ to (31 + p - q) binary places.

-5.03-
Example 1.

DFCS2

-5.C4-

We want to convert lengths in KILQIETRES to corresponding lengths in MILES. All the
KILOMETRE lengths are less than 100 and expressed to 24 b«p. 1.609 KM = 1 mile and 1*609
is held to 30 h.p.

Method*
Divide KILOMETRES by 1.609.
Integers KM x Result: 23 ^ " -■)

1.609 x 230 2 x 1 .609
therefore miles are given to 31 + 24 - 30 = 25 b.p.

9J JQ
The division of K.M. x 2 ̂by 1.609 x 2 is valid since the maximum value of KM is 100 and

100 x 224 < 1.609 x 64 x 22̂
< 1.609 x 23°

The maximum number of miles obtained in the result will be 62*1 corresponding to 100 KM. The
integer part of this is contained in 6 digits and, allowing one for the sign, there remains
a maximum of 25 binary places which can be used.

It is not always possible to divide without first shifting either the DIVIDEND down
or the DIVISOR up to make sure that the integer representing the DIVIDEND is less than the
integer representing the DIVISOR,

Example*

To convert MILES to KILOMETRES. The variables representing 'D are not greater
than 100 and held to 24 b.p, 0.621 MILES = ONE KM. and 0.621 is held to 31 b.p.

If we divide MILES by 0.621 the result will be KM., and we should expect more KM than
corresponding miles. Since the miles are already held to the maximum number of binary
places (24) and because the greatest number of KM which can occur is 160.9 requiring 23 b.p.,
we shall need fewer b.p. in the quotient than in the dividend. Further the divisor mu3t
be shifted up or the dividend shifted down. The divisor is already held to the maximum
number of binary places (31) and shifting this up would cause it to go out of length. We
must therefore shift down the dividend before starting the division. Let us shift it
down two places which gives 24-2 = 22 b.p. We now divide the integers

22MILES = 2 x MILES

by 0.621 = 231 x .621

and obtain KM = 231 x -ΐΓ1̂ ·"·
2-3 x .621

922 /Miles>
" 2 {‘1SST)

i.e. we obtain KM expressed to 22 binary places.
When more binary places are obtained from a division operation than are required the

quotient can be shifted down (left) after rounding off. If the result of a division is
ultimately required to, say, 30 b.p. it is advisable to obtain first the quotient to 31
b.p., round off and then shift down one place. This is only possible if a quotient to
31 b.p. is within single length.

In general, to obtain a rounded quotient to r binary places, adjust A and B to give
(r+1) binary places after division, round off and shift down one place. If r binary
places is the maximum which can be accoranodated, this will not be possible since (r+1) b.p·
would cause the result of division to be out of single length.

E x am p le *

To calculate given the integers 103x and 105 , and knowing 1 ̂ x 10. The
maximum value o f = ϊοδ = /10 · /10th in binary is

_ _ ----------- - OO I I OOM o o II o o I ΙΟΟΙΙΟΟΟ·0

We can hold 1/l0th to 33 hinaiy places (34 if necessary) in which case 1/K>th in a DEUCE
register would appear as

................... H O P I) OO I I OOI I OO I I oo O*
With the position of the binary point outside the register. To obtain rounded off to
32 b.p. proceed as follows

1. Shift 103x up two places giving 22 (103x) .
2. Divide 22 (103x) by 105

231 (^ - ^) . 233 fcjfj)

i.e. ~ ~ to 33 b.p.
3· Add to round off.
4* Shift down one place.

5.4 DIVISION INSTRUCTIONS.
The instructions required to divide A by B are
1. Send A to DS21^
2. Send B to TS16.
3· Start Division in an odd minor cycle with 1-24.
4* Do not use TS16 or DS2$ for a further 66 m.c.
NOTE (a) Do not send B to TS16 in the odd minor cycle immediately preceding the odd

minor cycle in which DIVISION starts.
(b) Remember 1-24 turns T.C.B. ON and that T.C.B. is ON after division is

complete.
Example.
10^x (an integer) is held in TS15* 105 is available in 2^. Obtain to 32 b.p·,

knowing that does not exceed ~th.
The instructions are

15 - 14 103x ---► 14
2 4 - 1 4 (d) 22 (103x) — > 14
14 - 21 ̂ 22 (1 0 ¾ — > 21 j A
24 - 165 (105) — ► 16 B
1 - 2 4 (odd) START DIVISION (33 b.p.)
1 - 1 Waste time
27 - 22g Round off to 32 b.p.
22g - 212 Shift down to leave 32 b.p.
Result in 212
with T.C.B. ON.

»

-5.05-
Example.

DPCS2

To obtain ^ to 20 b .p . , rounded o f f , knowing $ ~ t h . 103χ i s presen t in TS15
and 105 i s a v a ila b le in 2^.

15 - 21- (1 0 ¾ to 21, A ^
3 c 3

2. - 16 103 to TS16 BH-
1 - 2 4 (odd) DIVIDE g iv in g 31 b .p .
1 - 1 Waste time

P ^ - 22^ Round o f f to 20 b .p .

22 - 21 (22 ra.c. e , o) S h if t down 11 p lace s
R esu lt in to le av e 20 b .p .
212 with T .C .B .
OK.

In th is case we d iv id e the in te g e r s o r ig in a lly given and obtain 31 b in ary p la c e s . We
are about to d isc a rd 11 p lac e s and leav e 20. Before doing so we add a d i g i t in the top
p o s it io n o f those which w ill be d iscarded to round o f f those which are retained^

In g e n e ra l, b e fo re a l e f t s h i f t o f s p lac e s add a P a s round o f f and s h i f t l e f t s
p lace s by a tr a n s fe r o f 22-21 fo r 2S minor cy c le s (e , o) .

5 .5 QUOTIENT ERROR.

The quotient produced by the autom atic d iv id er w il l e ith e r g iv e the exact quotient to
31 b inary p la c e s o r a quotient which f a l l s short by P^.

e .g . + W g iv e s

w hile should g ive +5 hut a c tu a lly produces (+^ - P^)

5.6 TRUE REMAINDER RECOVERY.
The contents o f 21^ a f t e r d iv is io n represent a quantity r known a s the MACHINE

REMAINDER. T his does not correspond with R in the re la t io n

23 1 A = Q B + R 0 R < B f or B > 0
B 6 R < 0 f o r B < 0

To ob tain R from r (and th is i s only p o ss ib le i f B ^ 23^ ^ we use the r e la t io n

R = £ (& + B)

This i s the p ro cess

1 . S h if t 21, down one p la c e .
3

2 . Add B .
3 . S h if t 21j down one more p la c e .

The in stru c tio n s requ ired a t the end o f d iv is io n are

22^ - 215 S h if t down r in 21?
16 - 22? Add B from TS16.
22^ - 2 1 ^ S h if t dcwn to obtain R in 21^.

- 5 . 0 6 -

Example.

DPCS2

CLASS EXERCISE.
1. 5P1 and 7P1 are stored in and «Write the instructions to calculate to 31 b.p.
2# Repeat Example 1 to product a rounded off result to 30 b.p#
3· Repeat Example 1 to produce a rounded off result to 20 b.p.
4 · The binary number N in represents binary pence. Convert this to £ and fractional
£ by dividing by 21β.

N <T 2W3 x 106
2hDP̂ is available in 2q .

Row many binary places are available in the result?
5. The binary numbers in 170» 17.,» 17g represents three quantities x1» Xg» Xj to 16 b.p#

x1 < 100
Xg 1000

3C3 <. 500
Scale these numbers so that each is less than 10 and held to 27 b.p. The same scaling
factor should be used for each number and you are to choose this factor#

HPCS2

-5.07-

-5.0b-

1. 5̂ j ** 16 7P1 as divisor.
81 6 " 13

13 - 21 j 5P1 as dividend (use short store to transfer from even to odd nuo.)
1 - 24 (odd nuc.)
1 - 1 waste time.

212 - result from 21 .̂
a. 513 - 16

S16 - 15
13 - 213
1 - 24 (odd m.c.)
1 - 1

27 - 222 Add P^ for round-off.
22g - Result obtained to 30 b.p, from Source 22g.

3. 5., - 14 7P.v 1 -jo
24 - 14 (10 m.c.) 7?^ = 7 x 2 ·
14 - 16
8,6 -

14 - 21^ dividend = 5 x 2
1 - 24 (odd m.c.) division gives £5 x 2°/7 x 21° J . 2^1 = ̂ x 2^
1 - 1

27 - 222 add P^ as round-off.
22g - Source 22^ gives result to20 b.p.

4. 2n - 14 240 P„ = 240x2°υ ' PO24 - 14 (20 sue.) 240 x 2 .
14 - 16

8 4 - 1 4
14 ** 21 j |- 0 ~J
1 - 24 (odd m.o.) I 2̂ · -|20 I. 2^1 = · 2" therefore 11 b.p. result.
1 - 1

27 - 22g round off.
22g - Source 22g gives result to 10 b.p·

5. Since , Xg* x^ are all less than 1000. greatest possible is 999 for Xg therefore
soale by 100 to make greatest 9.99 (i.e. less than 10).

If scale factor is 100 x 2^ (i.e. p binary places)
* ■ 21.6 . 2^ = 227Too; 2T ·

therefore p = 16 + 31 - 27 = 20
20therefore scale by 100 x 2

EXERCISE SOLUTIONS.

20- 16 1C0 x 2 as d iv iso r *

170 - 13
13 - 2 1 , x . a s dividend*3 1

1 - 24 (odd m«c.)
1 - 1 waste time (nothing e ls e to do)

171 - 2 1 j a s dividend a f t e r d iv is io n completed·

2 1g - 17q s to re X1/10 0 back in 17q·

1 - 24 (odd m .c«)
172 - 13 Xj in to 13 a s waste time in s tru c tio n .

13 - 21^ X3 a s dividend a f t e r d iv is io n completed*

212 - 13 *3/100 into 13.
1 - 24 (odd m *c.)

13 - 17 ̂ s to r e X2/100 back in 17 ̂a s w aste in stru c tio n *
212 - 17g s to re X3/100 back in 1?2 a f t e r d iv is io n *

Ν.Β» U sefu l in stru c tio n s th at do not in te r fe r e w ith the d iv is io n p ro cess are used where
p o ss ib le a s the w aste time in stru c tio n w h ilst d iv is io n tak es p la c e *

-5.09-

6

- 6 * 01-

LECTURE 6»
6.1 INTRODUCTION.

Previous lectures have been concerned with describing the ORDER CODE of DEUCE, that
is the facilities which are available through each of the 32 Sources and Destinations
and the use of single, double or long transfers. Once a programmer knows this order node
he can prepare an outline programme in the following steps.

(a) Prepare a LOGICAL PLOW DIAGRAM of the pr oblem.
(b) Prepare a DEUCE flow diagram of instructions vising, where necessary, "pseudo

instructions"·
A pseudo instruction is one in which a symbol is vised to indicate the transfer of a

variable before storage positions are allocated to each variable.
Example 1.
It is required to form and store a pattern consisting of P^, P^y, P^g·
We could write

P1 - 13
P17 - 25
P^2 25
13 - (V P 17·**)

As we already have sources for P^ , P^y and P^g Yie would in fact write, in this case,
27 - 13
28 - 25
29-25
13 - (P1# P17* P32)

leaving open, for the moment, where (P^, P^y, P^g) will be stored. When, eventually, it is
decided to store this quantity in 7̂ ̂ the final flow diagram becomes

27 - 13
28 - 25
29 - 25
13- 715 (t V W

Example 2.

To calculate the length along a railway line at which stations occur, knowing the
lengths of each gradient. The process of summing the incremental distances might appear
on the outline programme as

L - 13
A L - 25
13 - L

indicating that the quantity L is brought from wherever it· is stored, increased by the
amount Δ I, from wherever it is stored and the new value of L put back in its rightful
place. When it is finally decided to store L in and Δ L in these instructions
would becoir'

515 - 13 (L)
65 - 25 (AL)
13 - 513 (L + Δ L) L

Before instructions representing a programme enter DEUCE they must be subjected to
two further processes

(c) Storage allocation of Data and Instructions.
(d) Detail coding.
The above examples illustrate the storage allocation of data. Instruction storage

allocation involves specifying the storage position which each instruction will occupy when
the programme is in the machine.

Some machines store their instructions in the same sequence as they appear on the flow
diagram. Each instruction leads to the one in the next storage location (with special
provision for discriminations).

DEUCE, however, stores its instructions in any order and it is one of the functions of
each instruction to nominate its successor. Using the instructions in example 2 above, we
could allocate “ 13 to 2Q, 6^-25 to 3^ and. 13 - 1 to and indicate these instructions
storage positions as follows

20 513 - 13 (L)
35 - 25 (& L)
4 ^ 13 - 513 (L + Δ L)-*» L

The programmer knows that 2^ leads to » 3^ leads to 4 ^ and so on, but how does DEUCE
know? How, for that matter does DEUCE know that instruction 2^ must cause 5^ ̂to transfer
to TS13 and not, say 5^^ or any other minor cycle of D.L.5? The answer is, by coding the
instructions so that they enter the machine with much more information than just a SOURCE
and a DESTINATION.
6.2 DEUCE INSTRUCTION V/OED.

Each instruction of the form S-D (m minor cycles) appearing on a DEUCE flow diagram
must be expanded on a coding sheet to contain at least seven items of information showing

(a) Which Delay Line contains the next instruction.
(b) Which SOURCE is involved in the transfer.
(c) Which DESTINATION is involved in the transfer.
(d) Whether the transfer is for one, two or more than two minor cycles.
(e) When the transfer starts.
(f) When the next instruction transfer starts.
(g) Whether the machine can proceed normally or whether it must stop.

For single transfers (one minor cycle) the transfer ends in the minor cycle in which it
starts, naturally. For double transfers (two minor cycles) the transfer ends in the minor
cycle after the one in which it starts.

For long transfers, (more than 2 m.c.) the transfer ends when the next instruction
transfer ends. This means that, for long transfers, (e) and (f) above go together.

Each instruction is contained in a 32 digit word and sections of a word are allocated
to specify the requirements (a) to (g). Each instruction has the value

NP1 + SP5 + DP10 + CP15 + WP1? + TP2g + GP^
N. N.I.S. or NEXT INSTRUCTION SOURCE uses Pg, P^, P^ and takes values of 0 to 7 to indicate
which Deley Line contains the next instruction (N = 0 means D.L. 8)
S. SOURCE uses Pj. to P^ and takes values 0 to 31 to indicate the SOURCE used in the transfer.
D, DESTINATION uses P^q to P and takes values 0 to 31 to indicate the DESTINATION of the
transfer.

- 6 . 0 2 -

DFCS2

C . ΠΗ/tRACTERISTIC uses and and tak es valu es 0 to 2 to sp e c ify the type o f tr a n s fe r

C = 0 SINGLE t r a n s fe r , 1 minor cy c le .

C = 1 LONG transfer, 3 to 32 m.c·
C = 2 DOUBLE t r a n s fe r , 2 minor c y c le s ·

W. WAIT NUMBER uses P ^ to P ^ and takes on valu es 0 to 31 to specify when the instruction
starts.
T. TTMTNG NUMBER u se s Pgg to P^Q and takes valu es 0-31 to sp e c ify when the next in stru c tio n

tr a n s fe r s t a r t s and when long t r a n s fe r s end.
G. GO DIGIT using P ^ i s 0 fo r STOP INSTRUCTIONS and 1 fo r GO in stru c tio n s .

Since N can only take values 0-7 it follows that instructions can only be obeyed from
D. L . ' s 1 -8 . These are the in stru c tio n delay l in e s . In stru c tio n s may be stored anywhere but

they must be in the NIS D .L .1 s when they are o p erativ e .

Each in stru c tio n en ters contro l in the minor cycle in which i t i s sto re d . Taking the

in stru c tio n s in Example 2

20 5u - 13
35 S - 25
411 13 513

the in s tru c tio n 5 ^ ” ^ en ters contro l in m .c· 0 , 6^-25 en ters control in m .c. 5 and. 1 3 -5 ^
en ters con tro l in m .c. 11. In g e n era l, an in stru c tio n

N S-D C W T G

stored in D.L. A in m.c. m i s designated a s

A S-D m
on a flow diagram and en ters contro l in m.c. m.
A ll the ac tio n s caused by an in stru c tio n are determined by the minor cy cle in which i t

en ters co n tro l.

TRANSFER The tr a n s fe r s t a r t s in minor cycle

m + Vi + 2
NIS TRANSFER The next in stru c tio n en ters contro l in minor cycle

m + T + 2

T his g iv e s the minor cycle o f entry fo r the next in stru c tio n from which poin t we can s t a r t

a g a in .
DOUBLE TRANSFERS Start in m + W + 2 and end in m + W + 3·
LONG TRANSFERS S ta r t in m + W + 2 and end in m + T + 2 .
th erefore number o f minor cy c le s o f tr a n s fe r i s

n = T - W + 1

NOTE (a) I f any value o f m + W + 2 o r m + T + 2 exceeds 32 , su b tract 32.

(b) I f T i s l e s s than W add ^2 to T .

6 .3 RULES OF CODING.

1. Determination o f T.

An in stru c tio n sto red in Aq lead in g to the next in stru c tio n B^' req u ire s a value o f
T given by

T = m* - m - 2

i f T comes out negative add ^2.

rvrmoo

-6.03-

-6.C6—
CLASS EXERCISES»

1· Write out the coding fo r each in stru c tio n in the f o i l wring sequences:-

DK3S2

2 . Why i s i t not p o ss ib le to code the follow ing sequences o f in stru c tio n s?

-6.C7·

DPCS2

EXERCISE SOLUTIONS,
Storage Position. N S D G W T
1. (a) 2o 2 13 - 14 0 1

23 2 19 - 15 1 2
h 2 17 - 19 3 4
213 2 14 - 17 1 4

0») 224 2 15 - 27 0 0

227 2 21 - 22 2 1 17
214 1 21 - 13 1 14

226 2 21 - 14 0 11
h 2 25 - 14 0 2
211 2 26 - 26 1 2 4
217 2 2 - 1 5 0 2
221 2 21 - 14 1 5
228 1 26 - 25 0 0

(c) 20 2 21 - 28 2 0 3

25 3 19 - 13 0 0

26 2 19 - 13 0 2
210 2 14 - 27 0 3

215 3 27 - 25 1 7 22

216 3 20 - 25 2 0 21

h 2 13 - 1 1 15 18
227 2 1 - 17 1 23 26
223 1 1 1 - 2 1 8 7

(a) 610 6 16 - 1 5 0
^12 7 18 - 1 7 1
715 0 19 - 13 1 26
811 6 18 - 25 2 6
619 6 13 - 14 0 7

2̂8 5 19 - 17 3 3
5i 6 1 - 15 19 21
624 2 15 - 1 0 10

N.B. C and & left blank
for the not common
single, unstopped
instruction.

2. (a) ^ 22 corresponds to 17g> n°t 17q ·
(b) A long transfer for 3 minor cycles starting at 1 MUST finish in minor

cycle 22 and therefore the next instruction must be taken from a minor cycle 22.
(c) 2(. is incompatable. It is never possible to have two discriminations leading

down similar arms to the same instruction, unless the other arms also lead to the same
place.

This is often overcome by a waste instruction, as at 2g below.

DPCS2

-6.09-

DPCS2

7

LECTURE 7

7.1 INTRODUCTION.
The previous lecture has described the process of detailed coding and shown how each

DEUCE instruction nominates a unique successor. All instructions taking pert in the active
part of a programme must be stored in D.L.'s 1-8 and each instruction enters control by an
instruction transfer along an instruction highway. Since instructions are binary patterns
it is possible to make arithmetic changes to instructions and we can add or subtract digits
or groups of digits from instructions and so change them to different instructions while
they are in their storage positions. Of course the action of altering instructions needs
other instructions to do the work and it is obviously wasteful to change an instruction only
once if it takes four instructions to make the change.

Instruction modification as it is called is a powerful technique but it is done only
when it improves the efficiency of a programme and not because it looks smart.

Changes may be made to any or all the parts of an instruction N, S, D, C, W, T, G but
the most usually altered part of an instruction is W.
7.2 INSTRUCTION MODIFICATION.

The wait number of an instruction determines the transfer minor cycle. By altering
the wait number we can cause the same instruction to change the transfer minor cycle,
advancing or retarding it by any step we choose.

Example 1»

To add the contents of TS14 to each minor cycle of D.L. 10.
(a) Without instruction modification we should proceed as follows

10o - 13
14 - 25 change 10q
13 am 100
1°1 - 13
14 - 25 change 10̂
13 - 101
102 - 13
14 - 25 change 10g
13

•
«

102

1°31 13
14 - 25 change 10^
13 - 1031

needing 96 instructions!
(b) With instruction modification we might do better. Suppose the Source 10

instruction is I, stored in 5̂ q and the D10 instruction (l2) is stored in 5,^. If we
wish to change the wait number of the instructions by adding (Source 28) we shall need
to use TS13 (we could use DS21 but will not do so) and a slight re-organisation will be
needed to effect our purpose. The instructions now become:

DPCS2

- 7 .0 2 -

—>» c;
^30 - 13 530 i s 10m - 13 (V
28 - 25 Add ΡΛ_ 17
13 - 530 Replace modified instruction in 5

530 10m - 13 Obey 530
14 - 25 Temporary storage of result
13 - 15 in TS15.
529 - 13 529 is 15-10m I2

28 - 25 Add P1?
13 - 529 Replace 529 modified.

529 15 — 10m Obey 529
n - 13

27 - 26 Coimt and test using
13 - n initial counter
13 - 28 o f 32 .

30

This routine should he carefully studied. Two instructions are modified, 529 arK̂ 5^q · Each
is brought from where it is stored, has P^y added to it, replaced in its storage location
and obeyed from where it is stored. Notice that as TS13 is replacing in 5̂ q > the same
word is taken to control and obeyed. This is an important feature of DEUCE. An instruction
may be transferred to a N.I.S. D.L. and obeyed from that D.L. in the same minor cycle·

To determine when all the words in D.L.10 have been dealt with it is necessary to strike
them off and a 'counter' initially set to 32 is counted down to zero. When it is zero the
process is complete.

At the end of the process the instructions in 529 end are 'the final modified copies.
If, at some later stage in the programme it i3 required to repeat the same set of
instructions then 5na and57A will need to be replaced by copies of the original instructions.
This can be done before the routine is entered or aftor the routine is complete.

On the first occasion in the second case, copies of and will already be in 530 and
529 ^rom '̂le initial, loading of programme into the machine.

DPCS2

-7.03-
7.3 DESTINATION Ο.

In stru c tio n s normally en ter con tro l through th e ir own p r iv a te highway. S p e c ia l p ro v isio n

i s made however to allow an in stru c tio n to enter con tro l by D.O. using a normal S—D t r a n s fe r .
Vihen th is occurs the in stru c tio n which the machine would take from a NIS D .L. i s prevented
from enterin g contro l and the word sent to D.O. becomes the next in stru c tio n *

F igure 1 shows schem atically the arrangements

When a word is sent to D.O., the switch S1 changes over from the NIS highway to the D.O.
path* D.O. is available in any minor cycle of machine operation and any SOURCE may be used·

Example 2»
To send the word in TS13 to CONTROL
write 1 3 - 0

Example 3.
To send the word from SOURCE 25 to CONTROL
write 2 5 - 0

Example 4.
To obey an instruction set up on the I.D. keys would require

0 - 0
In any sequence of instructions written on a flow diagram the storage location of each

instruction is shown
e.g. 20 613 - 13

52 27 - 25
7io 15 “ 613

2q leads to 5g which leads to 7-jq and so on. New/ suppose we include a 13-0
instruction in say, a sequence

20 613 “ 13 613 is A“B
52 28 - 25
128 13 - 0

what instruction do we write next? The instruction obeyed is the word in TS13* This is the
instruction in with added; further more instructions enter control in the minor
cycle in which they are stored only when they enter control on the N.I.S. highway# Here
an instruction originally stored in ̂is entering control by a transfer from TS13 we can

DPCS2

not write 6 ^ - 1 3

52 % - 25
’* 1 3 - 0
6 , j A - B

The instruction obeyed after 1^g is A-B but it is not obeyed from D.L. 6 and is probably
not even obeyed in minor cycle 13. It enters control in the minor cycle of transfer from
S13 to DO and we give the instruction this storage minor cycle but as it is not obeyed from a
NIS D.L. directly we describe it as a QUASI instruction and write

20 613 " 15
52 28 - 25
128 13 " 0

(613) Q30 (A - B)
It is customary to write the quasi instruction in brackets to distinguish it and we also write
its storage position alongside, also in brackets.

The instruction A-B, stored in but obeyed from m.o. 30 must be coded relative to the
minor cycle from which it is obeyed (in this case m.c. 30).
Any instruction obeyed as is coded relative to minor cycle q irrespective of the minor
cycle in which it is stored.
Any instruction of the form A-0 followed by a quasi instruction must be coded with equal
wait and TIMING ntunbers .such .that

\'l = T ¢= q - m - 2
where m is the storage position of A-0. :
In any instruction of the form A-0 with equal timing numbers the NIS is not used except when
A i= 17 or 18 . It is usual to choose NIS = 0 to save punching holes in a card.

Examples.

123 1^ - °
Q3O ()

is coded N S D C W T
0 13 0 0 0

13 14 - 0
Qi5 ()

i s coded N S D G W T
0 14 0 10 10

If the wait number and timing number of an A-0 instruction are not EQUAL the A-0 instruction
is wasted and leads to an instruction in the instruction store given by the NIS and T
of the A-0 instruction.

e.g. 110 14 - 0
coded as N S D C W T

5 14 0 0 6
leads to 5-j g
An instruction A-0 with a long transfer characteristic causes ¥ to be ignored and transfers A
to control in m.c.

q = m + T + 2
where A-0 is stored in minor cycle m.Tn this case only can V/ and T be unequal. This case is
important when using the Automatic Instruction Modifier.

- 7 .0 4 -

TYDOCIO

7*4 INSTRUCTION I.ICDIFIGATION USING D.O.
We shall repeat Example 1 using D.O. We shall also use DS21 and DS22 to modify the

instructions

529 ̂ 0 - 21 <d> *29 is *3-10
-------> 212 - 0 5j0 is 10-13

Q30 (10 - 13) Fetch 10m
14 - 25 Add TS14
213 - 0

Q29 (13 - 1°) Store 10m
28 - 22 (d) Increase W No. of

both instructions.
n - 13
27 - 26 Count from
13 - n initial value
13 - 28 n = 32 and test

E*iT
NOTES (a) 212 - 0 can generate only even values of quasi minor cycle and 21^-0

can generate only odd minor cycles·
(b) One instruction 28-22 (d) modifies both instructions in DS21.
(c) The original instructions in 525» 5 q̂ are preserved unchanged in those

storage positions.
(d) The wait numbers of the instructions in 529 3q °^°8βη 80 that the

first minor cycle of transfer is 10^ and relative to Q^q . It is a
coincidence that the storage minor cycles 529 jq 8X16 the same as the
quasi miner cycles.

Example 2·
To read 32 rows of 3 cards to D.L. 10. The instructions are

I - 13 I is 0 - 1QX Basic instruction·
----- > 1 3 - 0 I — ► control.

QJ0 (0 - 1QX) Obey I
28 - 25 Add 1 to W No.

14 L 13 13 - 14 Transfer to TS14 because TS13 is needed for
n - 13 counting» from an initial

27 - 26 value of n = 32
13 - n
13 - 28

____________ /
* £*it

Example 3.
To punch 16 even minor cycles of D.L. 10 followed by 16 odd minor cycles, starting

the even m.c. at 10q

-7.05-

- 7 . 06-

30 — 1 5 ι̂ \ CV-Ctrv 4Η·£.
________^ J », Ρ*λλλι -t» 77-r3 (iv-7fy)

1 5 —25 K^tU^y ■& jy*~ct. t*Ms~ -<M.C.

--------- 1 3 - 0
Q30 (10 - 29X) ^ I ·

28 - 25 (&) }μ λ λ ^ μ 4 M b y . 3-P,y

13 - 14

1 Λ̂νινί' 0bo**VT*· ^K% tiff i***̂1*^'
2 7 - 26 V

13 - n j
1 3 - 2 8 tiM tojcU» 4u~ rfjLffMr tff-vtt; 1

14-13 15-28 tvo-dL /ΐν»ν< j-λ fn U -n-c.
--- J ' *̂ «-1hU

■*** “ n diffuA- t***—a>
2 8 - 15 ?q to 7T/S.

LPOS2

CLASS EXERCISES.
1, Write the instructions to fetch successive words fromD.L.10 (starting at 10q) collate
them with the word in TS16 and place the results in D.L. 11 , starting at m.c. 0. Use
separate fetch and store instructions·
2· Repeat example No. 1 using constants to change the fetch instruction to a store
instruction and hack again to a fetch with increased wait number·
HIM1· The instruction

N 1 0 - 1 4 W Τή GO
may he changed to

N 25-11 W T2 GO.
hy subtracting

2-
0 17 - | 0 (^ - T2) X

Note if T^< Tg the negative value is inserted at Pgg position.
3. Write the instructions to fetch successive words Aram D.L. 10 to TS14 starting at
10j1 and working towards 10^·
4· Write the instructions to fetch word pairs Aram D.L. 12 to DS21 starting at 12^ .

*

typos o

-7.07-

EXERCISE SOLUTIONS.
1. 16 - 14

30 - 16 --- -----■— v
- 13

16 - 25
1 3 - 0
100- 15

- 13
16 - 25
1 3 - 0
25 - 110
16 - 13
28 - 25
13 - 16
28 - 26 (32 m.c.)
13 - 28

'0 ' j 0
all m.c. finished. ^

2. 16 -14
- 2I3 3 2 P17

___________ 13
1 3 - 0

Q30 L 10o“ 15j N» 10 - 15 o ^ GO
- 26 0, 17 - 3 0 - T2) X

1 3 - 0 __________________________
Q30 L·23 - 11oJ N1 25 - 11' 0 T2 00

28 - 23,3
21,- 28
*i .- °

[_ _j 25 0 17 - 3 1 (ΤΛ - T2) X
N.B. The factor added before looping back to the beginning is the factor previously

subtracted plus one in the wait number.
3. 30 - 16

- 13 Wait No. of 31 in basic instruction·
16-26 SUBTRACT counter.
1 3 - 0

[1031-14]
16 - 13
28 - 25 Increase counter by P^.

I 13 - 16
I 28-26 (32 m.c.) Stop at 32.

13-28
1.... ^ l°

-7 .08-

DPCS2

-7.C9-
4 . 30 - 16

Γ" ~ 13
16 - 2 5 (cl) Add counter twice.
1 3 - 0
12 -21T>,1
16-13

J 28 - 2 5 increase counter by P^y
| 1 3 - 1 6
i 28 - 26 (16 m.c.)Stop when counter = 16Ρ^
i 1 3 - 2 8
L~H— ~Ί o

N.B. By adding counter twice, it saves time on the long transfer 28 -26 at the end.

typhro

8

LEDTPRE 8 .

THE MAGNETIC DRUM STORE.
8.1 mTEODUCTICN

The capacity of the DEUCE high speed store is 384 wards in 12 DL s and 18 wards in the
Temporary Stores. 402 words is by no means adequate for the majority of programmes and
secondary storage must be provided either in the form of a ma®ietic drum or magnetic tape.
Both forms are available on DEUCE, the former as a standard machine facility and the latter as
an optional extra on MK Π machines.
8.2 THE MAGNETIC DRUM.

The magnetic drum is a cylinder, 6" deep and 4" in diameter. The surface is coated with
magnetic oxide and DEUCE word patterns may be written around the circumference of the drum as
magnetic pulse patterns. Ones are written, as magnetic dipoles with the N poles pointing in
one direction and zeros are written with the polarity reversed.

One circumferential band of information is known as a 'track* and it is arranged that
1024 digits are written on one track corresponding to 32 words of 32 digits each. One track
of the drum is thus equivalent in storage capacity to one long delay line.

ONE TRACK = 32 words = 1 D.L.
On the surface of the drum there is room for 256 tracks of information. The tracks are

so close to each other that 16 tracks occupy only % inch of the drum surface.
The total storage oanaoity of the drum is 256 x 32 = 8192 words
To provide separate recording heads for each of the 256 trades spaced so close together

is impracticable and the reading and writing mechanism is organised an a block system.
Writing on the drum is performed by 16 writing heads rigidly held in a block. This

block is free to move along a line parallel to the surface generators of the drum and can
take up any one of 16 positions. Each one of the 16 heads can thus record one track in each
of the 16 positions giving 256 tracks in all.

These trades are numbered 0 to 255 and are semetines referred to by the track number in
this way. More often the track is identified by the combination of the Block Rasition and
Head used to record the trade, as in the following table

-8.01-

Track No. Basition Head P/H Track No.
0 0 0 0/0
1Φ 0 1 0/1

14 0 14 0/14
15 0 15 0/15
16 1 0 1/0
17• 1 1 1/1
31 1 15 1/15
32• 2 0
239 14 15 14/15
240 15 0 15/0
241• 15 1 15/1
254 15 14 15/14
255 15 15 15/15.

DPCS2

Sometimes programmers use A for P and B for H. Thus track 220 is A/B = 13/12 = P/H.
The A/B or P/H notation is very convenient. It will have been noticed that the absolute
track number is given by

Track No. (T.N.) = P x 16 + H (or A x 16 + B)
e.g. 220 = 13 x 16 + 12

Furthermore if we write the binary number representing 220 at the P̂ position of a
DEUCE word it may be separated into tv.o parts P̂ to P^ and P^ to Pg.

220 = 0011 1011

P1 -4 P5 -8
P .represents H (or B) and Pc «represents P (or A). The P/H value of a track number is 1 - 4 2- o
thus quickly read from the binary number of the track.

Reading and writing are not perforated with the same head for any track. A separate
block of read heads, identical to the write heads is mounted on the opposite side of the
drum. This can take up positions identical with the write block and yet independent of it.
There is no necessity to have the same block positions selected cn the read and write heads·
8.3 ACCESS TO THE MAGNETIC DRUM.

Information is written on to the drum and read from the drum in groups of 32 words. To
achieve this DL 11 is employed as a "buffer store". All information passes to and from the
drum via DL 1 1 , one delay line (= 1 track) at a time.

Data or instructions to go up to the drum are placed in DL 11 and written on a
preselected track from which they may be subsequently read down into D.L. 11 for transfer elsewhere
in the high speed store.
8.4 MAGNETIC INSTRUCTIONS.

Two destinations only are available for magnetic operation.
D31 Selects the block position (shift)
D30 Selects the head and initiates the magnetic transfer.

Since the SOURCE and characteristic are not required in the usual context they are given special
jignificance in conjunction with D30 and D31. With D31 a characteristic 0 specifies a block
shift of the Reading Heads and Characteristic 1 specifies a block shift of the WRITING HEADS.

For D30, characteristic 0 initiates a READ, i.e. transfer from track to DL 11 while
characteristic 1 initiates a WRITE transfer from DL 11 to a track an the drum*

In D31 instructions the SOURCE number specifies the P (or A) section of a track number,
the so called shift position and in D30 instructions the SOURCE number specifies the H (or B)
3ection of the track required.

Example 1.
To read track 220 to DL 8. Track 220 is 13/12.

13 - 31 (s) Select Read Shift position 13
1 2 - 3 0 (s) Read with head 12 causing track 13/12 to enter
1 1 - 8 (32 m.c.)DL 11 from which it is transfered to DL 8.

-8.02-

DBCS2

-8.03-

To write DL 7 on track 130 Track 130 is £/2.
7 - 11 (32 m.c.) Sill the magnetic buffer DL
8 - 31 (1) Set WRITE HEATS
2 - 3 0 (1) WRITE up to 8/2.

It vri.ll be apparent that the order of events in READ and WRITE instructions is not
complementary. In READ instructions, the order is Shift, Read, Transfer, whereas in WRITE
instructions the order is either Shift, Transfer, Write, or Transfer, Shift, Write·

Example 3.
To write DL 7 to track number 130 we could use

8 - 3 1 (l) Set write shift position 8
7 - 1 1 (32 m.c.) Transfer DL 7 to DiL 11
2 - 3 0 (l) Write DL 11 to track 8/2.

8.5 MAGNETIC INTERLOCKS.
One operational disadvantage of the magnetic drum is its relatively long access time.

To shift either set of heads requires 35 major cycles and to read or write one oonrplete track
takes 15 major cycles* Any magnetic operation requiring a shift and a transfer can take
35 + 15 = 50 MAJOR CYCLES. This can be more than enough to ruin an efficient programme when
magnetic operations are running in parallel with other synchronous operations such as reading
from cards or punching results. Under these circumstances it is necessary to adopt the
technique of head-shift anticipation whenever possible. In any 'ordered' programme where all
operations are predictable fran the nature of the problem it is possible to shift the heads
well in advance of the transfer instruction,separating the D31 and D30 operations by other
instructions. In this way the total time may be reduced appreciably by utilising magnetic
interlock time for computing instructions.

When writing up a track of data or instructions it is essential that writing shall not
start until the correct shift position has been set up, and once a write instruction has been
initiated, DL 11 must not be disturbed or another shift operated until the current writing
operation has been completed. To relieve programmers of the responsibility of arranging
matters, all potentially destructive operations are automatically prevented by a magnetic
interlock.

Without interlocks the instructions
2q 13 ~ 31 (s)
22 12 - 30 (s)
\ 11 “ 1° (32 m.c.)

would take just over one major cycle to complete. With interlocks however, the D30 instruction
is not allowed to proceed until 35 m. sec. after the D31 instruction and the 11 - 10 transfer
is not allowed to start until 15 m. sec. after the D30 instruction.

The interlocks are
(a) Within an interval of 35 m. sec. following a D31 instruction, any instruction with

D30, D31, S11 or D11 will be held up until the end of the 35 m.s. interlock time.
(b) Within an interval of 15 m. sec. following a D30 instruction any instruction with

D30, D3 1, S11 or D11 will be held up until the end of the 15 m.s. interlock time. Interlocks
may be thought of as barriers, D30 & D31 are the only instructions which can put up the barrier^.
All instructions except other D3O & D31 instructions and S11 & D11 instructions can pass through
the barrier. D30's barrier is up for 15 m. sec., D31's for 35 m. sec.

Exanxplc 2 .

DDCS2

-8.04

There is one exception to these rules. If the heads are in say position 5 and a 5 - 31
instruction is received by control for the appropriate set of heads, no barrier is raised as
the heads are not required to move.

to. instruction calling for a head «hi -et to the position currently in vise does not
generate an interlock.

Some DEUCE computers have a more rational set of interlock rules, e.g. S11 can be used
after D30 (l) and DJO (s) is not interlocked after D31 (1)* Such interlocks result in faster
operation for random access programmes inhere shift anticipation is not possible.

BECS2

CLASS EXERCISES.

1· Write the instructions to perform the following.
(a) Write D.L.9 to track 10/7.
(b) Read track 0/3 to D.L. 8.
/ x , 0(c) Clear track 0/0. i
(d) Write a P ^ in minor cycle 16 of track 15/15·

2. Write instructions to read tracks 7/0 to 7/7 into D.L.'s 1 to 8. Make use of
the fact that the tracks are

(a) All in one head position.
(b) consecutive.

to use single instruction modification.
3· Write instructions to write D.L.'s 1 to 8 to tracks 1A/14 to 15^5·
4. Write a programme to clear all tracks of the drum.
HINT. Use two counters and instruction modification.
5. Write the instructions to write up D.L.8 to track 13/12 with the track zero summed
in m.c. 3 1·

-8.05-

DPCS2

DPCS2

—ο
EXERCISE SOLUTIONS.

1 . (a) 10 - 31 (l) S h i f t w rite heads to p o s it io n 10.
9 - 1 1 (32 m.c.)Copy D .L.9 in to D.L. 11.

7 - 3 0 (l) w rite D .L .11 using head 7 ·

(h) 0 - 31 (s) S h if t read heads to p o s it io n 0 .
3 - 3 0 (s) Read head 3 in to D .L .11.

1 1 - 8 (32 m.c.)Copy D.L.11 in to D .L .8 .

(c) 0 - 3 1 (l) S h if t to p o s it io n 0 .
30 - 11 (32 m .c .)C lear D .L .11.

9 - 30 (l) Write zeros on head 9 ·

(d) 1 5 - 3 1 (l) S h if t to p o s it io n 15·
30 - 11 (32 m .c .)C lear D .L .11 .

“ 1 1 16(V
1 5 - 3 0 (l) Write D.L.11 on head 1 5 .

2 . - 21 (d) B a sic in stru c tio n s to DS21·

7 - 31 (s) S h if t heads to p o s it io n 7 .
21^ - 0

7 - 30 (s) Read requ ired head.
21 y 0

11 - 8 (32 m.c.)Copy in to requ ired D .L.

- 23 (d) j Modify in stru ctio n s Subtract P,. from 21?
1 ' P1Qfrom 21^

N.B. This routin e overw rites AIL MIS D .L . 's . The next in stru c tio n i s th erefore taken
from the NEW D .L .1 (i . e . Track 7 /θ) and the minor cycle i s the same a s the one
previously containing -23 (d) . A ll the in stru c tio n s in the loop o f th is routine
must be in D .L .1 , otherwise some w ill be overw ritten before the routin e i s conpleted.

3 · - 213 Set b a s ic in s tru c tio n s .
- 14 1i|P ̂ + 14P^ S e t track counter.

- 15 ^ 5-8 Set 00-^a t e d ig i t s .
21y * 0

[^1 — 11 (32 Copy D.L. in to D .L .11 .

- 13 B asic in stru c tio n 0 - 31 1
25 - 25 Modify source fo r s h i f t p o s it io n .
1 3 - 0

£ l 3 - 3 1 (1)] S h if t heads.
24 - 14 (4 m .c.) Move up track counter.

- 13 B asic in stru c tio n 0 - 30 1 ·
25 - 25 Modify source fo r head number.
13 - 0

£ 14 - 30 1 j Write using co rrect head.
23 - 14 (4 m .c.) Move track counter down again .

14 - 13
27 - 25 Increase ti-ack counter by P̂

13 - 14
- 26 6P. + 15PC have we done a l l D .L. ' s?• 3

13 - 28
nZ j

- 22j + P[- Increase source o f tra n s fe r in stru c tio n
by one.

DPCS2

-« .Un

c le a r 2 1 .
C lear D .L .11.

B asic in stru c tio n 0 - 3 1 (l)
Add counter fo r head s h i f t .

S h if t heads.
Add Pc .5

have we reached 17?

(N.B. 1 6 - 3 1 i s equivalent to 0 - 31)
FINISH.
C lear 21y

B asic in stru c tio n 0 - 3 0 (l)
Add counter fo r head number.

Write zeros on tra c k .
Add P_. b

Have we reached 16?

•nZ

S h if t heads.
C lear fo r sum check.

C lear 13.
Sub tract D.L . 8 from TS13*
Copy TS13 in to 8^ .
Copy D.L. 8 in to D.L. 11.
Write on trad e .

N.B. When the track i s reach back from the drum, the sum i s checked by: -

30 - 13
1 1 - 2 5 (32 m .c .)
13 - 28

9

INPUT AND OUTPUT (<*- FIELD WCRKING)
-9.01-

I
i

9*1 INTRODUCTION.
This lecture deals with the input to and output from DEUCE of DATA. It should be

realised right from the beginning that DATA and INSTRUCTIONS are two completely separate
entities, and require completely different treatments* Another lecture deals with the
reading of instructions; this lecture deals with the reading of data and punching of results^
two aspects of the programme which should be settled before a single instruction can be
written. It cannot be stressed to highly that until the programmer knows what data he will
be supplied with and what results he is expected to produce, he can do nothing.
9.2 INPUT AND OUTPUT MEDIUM.

The usual medium for reading data into DEUCE, and for getting results out is the
standard 80 column punched card. It is the normal practice, however, to use only 32 of these
columns (card columns 17-48), - one column for each digit in the binary word - and the rest
are ignored by DEUCE although they may be used for card numbering and other useful
information to assist in card handling off the machine. Later models of DEUCE are fitted to
use 64 columns on each card, but this will be dealt with in a later lecture, and we will
only refer to the simpler 32 col. system here.
9.3 BASIC REQUIREMENTS.

In order to allow the programmer as much scope as possible, it is necessary to have
orders in the instruction code to start and step the reader, start and stop the punch, read
a row of a card and punch a row of the card.

The orders concerned with the input and output are therefore:—
(a) 12-24 Start cards passing through the reader. When this order has been obeyed

cards will pass continuously through the reader until either it runs
out of cards, or until the reader is stopped by the appropriate DEUCE
instruction*

(b) 10-24 Start cards passing through the punch, in a similar manner to the reader*
(c) 9-24 Stop cards passing through either the reader or the punch*
(d) 0- A Read the word from the row of the card at present under the reading

brushes into destination A*
(e) B-29 Punch the contents of source B on the row of the card at present under the

punch knives.
9.4 TIMING·.

As the card reader and card punch are mechanical appliances, they do not function as
fast as DEUCE itself. It is therefore necessary to have a system whereby DHJCE will wait
for the reader or punch, and only carry on when the right stage of reading or punching is
reached. For this reason, all instructions having source 0 (for reading) or destination 29
(for punching) are made "stoppers" - i.e. they do not have a GO digit punched on them*

When DEUCE comes to such a STOPPED INSTRUCTION, it waits until it gets a signal to
continue. The reader and punch are so organised as to emit a suitable signal - called a
"single shot" - every time a row of a card is in position to be read or punched. Hence,
it is possible to guarantee that the correct row of the card is in position before causing
DEUCE to read or punch any information, but it should always be remembered that if DEUCE takes

DPCS2

too long between such stopped instructions, it will miss the single shot conpletely and
all subsequent rows will be read one late. The relevant timings will be given later·
9.5 SIMPLE EXAMPLES.

(a) Read the first two rows of a card into DS192» ES19^·
12- 24 Start the reader.
0-19gX First row into 19g (Y row of card)
0-19^X Second rcw into 19j (X row of card)
9-24 Stop the reader.

Note that both source 0 instructions are "stoppers" indicated by the cross, but
that the two instructions to start and stop the reader are always "goers", to be obeyed as
fast as possible.

(b) Punch the contents of the four short stores.
10-24 Start the punch.
13- 29X Punch TS13 on Y row*
14- 29X Punch TS14 on X row.
15- 29X Punch TS15 on 0 row.
16- 29X Punch TS16 on 1 row.
9-24 Stop punch.

N.B. If the reader is stopped part way through a card, it is not possible to read the
subsequent rows of that card, and the next single shot will appear on the Y row of
the next card when the reader is recalled. A similar rule applies to the punch.

9.6 PROGRAMMES INVOLVING· READING AND PUNCHING.
It is not possible to read from and punch into cards at the same time, due to the

inherent difficulties of running two macliin.es at once with the consequent muddling up of the
two sets of single shots. Therefore, before the programmer writes an instruction to start
either the reader or the punch he should make certain that the other is stopped. The best
way to ensure this is to always shut off the reader or punch as soon as the current operation
is finished.
9.7 DECIMAL OPERATION.

So far, we have only considered binary reading or punching, but it is the accepted
practice for all data to be read in decimal if possible. Firstly, how do we punch decimal.
The normal system is to only have one punching in each of the card columns, and its value is
determined by the row of the card in which it is punched. For this purpose, the rows 0-9
indicate the decimal numbers 0-9, and the Y and X rows indicate positive (Y) and negative (X)
signs. Thus to punch the two numbers + 432 and - 748, we would punch. Y432 X248, one
punching to each card column, using a total of eight columns.

As the rows of the card come in order Y-9 to the reading station, it is possible to
determine the value of each decimal digit by counting the single shots before a punching
appears, and using suitable instructions to convert these to binary. However, since this
task is common to all programmers, a selection of subroutines has been produced to deal with
the more usual layout of decimal cards. It is therefore advised that the programmar should
select a suitable read (prefix R) or punch (prefix P) subroutine from the library to
perform the reading and converting to binary, or converting from binary and pinching, rather
than attempt to write his own. It is often possible to convert an existing subroutine far
a special purpose, but attention should be paid to the timing restrictions before this
is attempted.

- 9.02-

DFCS2

-9.03-
9.8 TIL.

Since the time between rows on a card is for less than the time between the last row
of one card and the first row of the next, it is desirable to have a method of ascertaining
if the row now being read (or punched) is the last on a card.

For this reason, a special signal TIL is provided to indicate the last row· It appear·
shortly before the last row single shot, and lasts for some time alter it. It is inspected
by the instruction 2-24, which in effect discriminates on the state of the TIL signal,
going non-zero for the last row only.

In the example, having read any row of a card other than the last, the TIL line is
zero, and is called. However, for the last row of a card, the TIL signal is present
and the next instruction comes from 1c.

In this way, the last row of a card can be detected and use made of the extra time
available between single shots.
9.9 POINTS TO NOTE.

(a) It is not allowable to leave stoppers in instructions which do not refer to the
read or punch, if either machine is called at the time the instruction is obeyed, unless it
is inserted deliberately to waste a row of a card. The usual failing is for stoppers to
be left in a programme so that the rows of the card get out of sequence with the programme,
resulting in either programme failures or incorrect results.

(b) It is not stated on some of the decimal punch subroutines that they will not
operate correctly with T.C.B. ON. A sympton resulting from T.C.B. ON is that the result is
always zero. For these routines, and for several others in various categories it is assumed
that T.C.B. is OFF, as is usually the case during a calculation, since most division
subroutines put T.C.B. off before exit*

(c) It is often possible to write a programme that will work on one machine and not
on another, due to slight differences in reader or punch speed· Remember always to write
your programme to conform to the specifications and, if you are in douht, stop the read
or punch and recall it - it is easier to do this when writing a programme than it is to alter
it later.
9.10 TIMING· SPECIFICATION.

Time measured:— Time in major cycles for:-
FRCM TO READ PUNCH

Single shot (Y to 8 row) Next single shot. 15 38
Single shot (9 row) Single shot (Y row) 57 116
Single shot (9 row) Look for TIL. 18 18
Any single shot. Read same row. 2 -

Punch same row· - 4
blear read or punch. Wait before Using I.D. keys. 14 -

Wait before using O.S. lights·
Wait before recalling read or

mm 20

punch. 2 2
C ji - r I

DPCS2

-C9.01-

09.1 INTRODUCTION. /i^OOTHJT.

In order to maintain a permanent record o f a l l data fed into the computer , i t i s the
normal practice to punch a l l data in decimal on card s, using a l l 80 columns i f required.
Each column o f the card may then represent:-

(a) A sin gle numerical d ig it (10 p o s s ib ilit ie s) ·
(b) A sin gle alphabetic symbol (26 p o s s ib ilit ie s) .
(c) A sp ecial symbol fo r use by the peripheral card equipment.

In order to represent a l l o f these in a binary system, i t i s necessary to have a s ix -b it
binary group, allowing 64 d ifferen t combinations. The code used fo r DEUCE i s based on the
I.B.M . 4-zone code, to lin e up with tabulations e tc . This code has the following basic
ru le s:-

(1) A sin g le punching in any o f rows 0 - 9 o f a single card column sh all be
interpreted as a number, in the range 0 - 9 corresponding to the row in which i t i s punched.

(2) The alphabet sh a ll be represented by a punching in one o f the 7 , X or 0 rows,
together with one punching in any o f the rows 1 - 9 , giving two holes in the same card
column. The T , X or 0 punching i s referred to as the " overpunching". Of the 27 combinations
given by th is system, 26 are fo r the alphabet and the odd one (1 overpunched 0) i s a PULL
STOP.

C9.2 BASIC REQUIREMENTS.

For the m ajority of purposes, the information that i s required to be fed into a
computer con sists o f eith er a se rie s o f numbers, or a se rie s o f alphabetic characters, or a
combination of both. The 80 column input-output machine i s designed to read (or punch)
standard 80 column cards with numeric or alphabetic information in any desired combination·

C9.3 GENERAL ORGANISATION.

In order to make the system as fle x ib le as p o ssib le , the machine i s designed to treat
each of the 80 card oolumns as a separate en tity , and to produce a binary character to
represent each column* A six d ig it binary character i s used, giving 64 d ifferen t coni)inations,
o f which 36 are in general use - 10 fo r the numbers 0 - 9 and 26 fo r the alphabet - leaving
the remaining ones fo r special purposes.

C9.4 CODE.

The code used to represent alphanumeric characters on the punched card i s based on the
I.B.M . 4-zone code. The choice of th is i s based on the obvious necessity to keep the system
used as d o se as p ossib le to existin g punched card practice to enable fu ll use to be made
o f ex istin g peripheral equipment - tab u lato r, so rter , e tc .

The code i s based on the principles th at:-

(a) A sin g le punching in any o f rows 0 - 9 o f a card sh a ll he interpreted as a
number.

(b) A single punching in ary o f the rows 1 - 9 , together with a sin g le "overpunching*
in ary o f the rows Y, X or 0 sh a ll represent an alphabetic character. I t w ill be noted
that th is allows 27 possib le combination, so the combination 0 , 1 i s not used, following
tabulator p ractice .

DFCS2

-0 9 .,0 2 -

The table indicates how each letter of Y X 0
the alphabet is represented. For example, 1 A J -
the letter K appears in row 2 underneath the 2 B K s
X. Therefore the character X, 2 represents 3 C L T
the letter K· 4 D M u

5 E N V
6 F 0 w
7 G P X
8 H Q Y
9 I R z

09.5 binary representation.
The binary representation for any character can be calculated using the following

rules:-
(a) For a punching in rows 1 - 9 » add the value of the row.
(b) For a Y overpunching, add 16·
(c) For an X overpunching, add 32·
(d) For an 0 overpunching, add 48.
(e) For an 0 punching on its own, add zero·
(f) For a blank column add 15»
Therefore, if a K is required, this will be punched X2 on the card, and will be

interpreted as 32 + 2 (= 34) in the binary code*
The code used for input and output is identical, except for two special cases ·
(a) Because of the difficulty of putting 15 in for a blank column, especially when

several blank columns together are required, it has been decided that the binary character
63 (all ones) shall also punch a blank column· Consequently, it is not possible to obtain a
character 63 from the reader, as it will automatically be changed to 15» the normal code
for a blank column·

(b) Because of the two different roles performed by the 0 row (either a numeric zero»
or an alphabetic over punching) the combination 48 will always be punched as zero, and it
is not possible to produce the combination 48 from the reader·

This leaves 26 possible combinations as yet unused· These all require three punchings
in the single row of a card, and will be of the form Y,X or 0, any one in the range 1 - 7 ,
and 8. The binary equivalent can be calculated by adding the contribution of each hole
individually following the rules given above*
C9.6 ARRANGEMENTS 0? BINARY CHARACTERS.

So far, we have dealt with a single card column, and the binary character resulting from
it· As we have 80 columns to deal with, each producing a 6 digit binary character, at
least 15 m»c. will be required to store these* For convenience sake however, it is more
simple to allow 10 card columns to be placed in each pair of minor cycles· This leads to a
far more simple layout and reduces the effort involved in sorting out the characters when
required·

DPCS2

-C9.05-
The diagram shows how the group of 10 card columns are arranged in a pair of minor

cycles (a word pair) in 6 bit binary form. As Col· 1 is the most significant on the decimal
card it has been located at the most significant end (binary-wise) of the word pair·

The word pair containing the characters for cols· 11-20 will be located in the two
minor cycles immediately before cols. 1-10 and so an, so that col. 80 appears in the top
left-hand comer of the block of 16 minor cycles·

It should be noted that the most significant four digits of each -word peir are not
usuable* Before a card is read they will be cleared and nothing will be put into them by
the reader. Conversely, the punch will completely ignore the existance of these four digits·
C9.7 LOCATION OP BINARY CHARACTERS.

The machine is designed to read from cards into D .L.12, or to punch from D.L. 12 onto
cards. As it is sometimes necessary to read two cards, one into one half of D.L.12 and the
second into the other, we have to allow the programmer to dictate whiah part of D.L.12 shall
be used. Therefore, the rule is that whenever we ask for a card to be read, we also
stipulate the first minor cycle of the "read store", i.e. the minor cycle in which ools·
80-76 shall be placed. The machine then knows that minor cycle and the following 15
consecutive minor cycles are required to hold the binary characters produced from the card
about to be read.
09.8 ORDER CODE - HEADER.

The operative instruction for reading on 80 col. card into D.L.12 is of the form
1 2 - 2 4 (l) The characteristic 1 indicates that it is to be read in the 80 col. fashion ·

The wait no. defines the first minor cycle of the read store for this card only,
and the reader will stop automatically at the end of a single card cycle·

Example 1.
12 - 24 (l) (m.c. 0)

13
Coded as:- 1» 1 2 - 2 4 1, 7, 10.

DPCS2

The wait number of 7» following the normal rules governing the minor cycle of
transfer defines the start of the read store in minor cycle 0. To make the flow diagram
clear, it is usual to write (ra.c. 0) in brackets beside the instruction to indicate where
the read store starts·

Once this instruction has been obeyed the card reader will pass one card through the
feed, clear any information previously stored in the 16 minor cycles of the read store, and
replace it with the characters generated from the pundoings on the card. All of this is
done purely automatically, and the computer can proceed with other things, provided the 16
minor cycles of D.L.12 into which the characters are being assembled are not disturbed·
C9.9 ORDER POPE - PUNCH.

The instruction to command the computer to punch an 80 col. card is 10 - 24 (l)· The
wait number is again used to determine which 16 minor cycles of D.L.12 shall be punched
but the minor cycle specified must be the first of the READ store, as the machine assumes
that the 16 not being used for reading shall be the ones from which it shall punch.

This rule applies even if no reading operation is actually taking place·
Example 2»

125 1 0 - 2 4 (1) (m.c. 0)
18

Coded as:- 1, 10-24,1,5,13.
The wait No. of 5 defines m.c. 0 (which is written beside the instruction) as the fist

minor cycle of the READ store, and therefore this instruction will punch the contents of
D.L. 12 minor cycles 16 - 31*

As for the reader, the card feed will pass one card only and then stop automatically·
The 16 minor cycles used for the PUNCH store must not be interfered with during the
punching period.
09.10 INTERLOCTS.

As it is not allowable to interfere with D.L.12 during either reading or punching,
a signal is provided on the TIL line to enable the programme to check whether such
operations have been completed. As soon as any 80 column reading or punching operation
is called (by obeying 10 - 2 4 l o r 1 2 - 24 l) the TIL line emits a signal, until the operation
is couplete. As soon as the TIL line reverts to its ZERO state, the programmer is free to
interfere with D.L.12 without prejudice to any card reading or punching operations·

It should be noted that in the event of any nv?l -operation of the card feeds such as
a jammed card, the TIL signal will persist until such time as the trouble is cleared and
the card is fed correctly, thus causing the programme to wait until it is safe to proceed·

Example 3 «

Read a card into 12q_ ^ and transfer the result into D.L.9«
12 - 24 1 (m.c. 0) Read the card,

ί 2 - 2 4 Wait for the TIL line to revert
t - ' Z to zero.J12 - 9q_.jp Now transfer from D.L.12.

Following any 80 col, read or punching instruction, a TIL loop as in Example 3
above should be used before D.L.12 is again disturbed.
C9.11 COMBINED READING· AND PIE’CHDTG.

It is allowable to both read into and punch from D.L.12 at the same time, but the read
and punch stores will be the two separate halves of D.L. 12. If combined operation is

DFCS2

-G9.0>
required, the two instructions 10 - 24 1 and 12 - 24 X must be obeyed within a period of
52 nwc.'s but the order in which they occur has no effect on the operation· The only
requirement is that the first of the two instructions shall define the start of the read
ptore i.e. exactly the same as if only single operation is desired· When the second of
the two orders calling for combined operation is obeyed, the start of the Read Store for the
next card cycle has already been defined - by the first order - so the wait number of thi»
instruction is of no significance whatsoever, as the machine will completely ignore it·

If this restriction of 32 minor cycles between obeying the two instructions is exceeded,
the second of the two is liable to be completely ignored, or produce a condition that works
occasionally, in a random manner·
C9.12 PLUG· BOARD FACILITIES.

The 80 col. input-output machine is equipped with a plug board, which allows the
relative positions of binary characters in D.L. 12 and the resulting punching (or the reading)
column on the card to be varied. For the purposes of this lecture, all plugging is assumed
"straight’*, i.e. in the form normally used·

If it is essential for a different layout to he obtained, for some reason beyond the
control of the programmer, he should draw up a chart indicating what plugging is required,
to reduce the chances of error* It is also recommended that he prepares a suitable test
programme which checks that the plugging is correct, by reading a set of cards, punching
them out again, and checking against a master pack to see that they are all in faot correct·
In all cases, remember that a standard board should never be interfered with: a spare should
be obtained for any non-standard arrangement.
09.13 RESTRICTIONS.

Because of the circuit layout, it is not possible to use D29 during an 80 col·
punching cycle. Also, S.O· is unreliable during an 80 col. read cycle.

It is recommended that in any section of programme where there is the slightest
possibility of any 80 col. operations being performed, Source 0 and destination 29 should
MOT he used.

DPCS2

10

I3DCTORE 10.

READING HjOGRaJ.ffi.ffi INTO DEOCE.
10.1 INTRQDUCTIGT.

Having written a programme of instructions, the problem of actually getting them stored
inside the computer has to be considered. It should be realised from the start that instruction?
and data are two completely different things, and are read into the nachine in different ways.
The reason, for this is that instructions always occur in blocks of 32 (one delay line or one
track on the magnetic dram) and can be dealt with in a standard manner, using a minimum of
extra information supplied by the individual programmer, whereas no two programmes want the
data in the same form or the same location. Consequently systems for reading programmes into
the machine in the simplest manner possible have been developed, allowing the programmer to fill
what stores he likes with instructions and to have his first instruction in any location he
selects, but from that point he is left to read M s own data in the peculiar form he requires.

This lecture is only concerned with bringing the instructions into their correct location
inside the machine, and sending the first one on the flow diagram into control to be obeyed·
10.2 ΏΗΕΚΕ SHALL mOGlWMES BE HJT

Before deciding where to store his programme, the programmer should decide what type of
programme he is writing:

(a) A sm%Ll programme which may be entirely contained in the high speed store·
(b) A larger programme in which the drum will be required to store instructions until

they are required for use.
These two types will now be dealt with in greater detail.

10 .3 m x s u a m m the high sheep store chut.

Y/henever instructions are punched, they are punched in what is called * triad* formation.
That is, the 32 instructions for any one delay line are punched on three cards, leaving the
first four rows at the tap of the first of the three cards blank (at present). It should be
remembered that once these three cards are punched, the order in which they appear defines the
minor cycles in which the instructions will eventually be stored, so they should never under any
circumstances be disturbed in their order amongst themselves, although the position of the three
cards relative to other 'triads’ may be changed· The first four rows of each triad are reserved
for a prescribed formula to instruct the computer where they are to be stored· This formula is
different for NIS and non - NIS delay lines, and is of the form:

DL 9-12 (non NIS) Y row 1, 0-B, (l) 29, 28 x
X row B, 0-D, 30, 31 x
0 row B, 0-B, 27, 28 x
1 row 1, 0-D, 30, 31 x

For these, D is the number of the delay line to be filled, B is the number of a "buffer
Delay line" (in the range 2-8) used in the filling sequence (B is usually taken as 7)·
N.B. The buffer delay lane B will be left filled with superfluous instructions at the end, unless
it is subsequently filled with a triad of instructions.

DL 1-8 (NIS) Y row BLANK
X raw D, 0-D, (l) 26, 25 x
0 row D, 0-D, 30, 31 x
1 row M, 0-D, 30(T-l)x

'-10.01-

DKIS2

Λ ρο»" (V*

in, D is the number of the delay line to be filled,
B. for HIS D where D = 8, punch ZERO). If D is the lowest numbered delay line to be filled,
eh M and (T-l) when the first instruction of the programme is in i.e. for first
tructicm in M = 2, (T-l) = 18: if 7Q, M = 7» (T”1) = 31·
D is HOT the latest numbered delay line, punch M = 1, (Τ-Ί) = 31 ·

Y/hen the triads for all the delay lines that are required to be filled are punched, they
nl/i be arranged with the triad for the HIGHEST NUMBERED D.L. FIRST, followed by other triads
iescending order, with the LOWEST NUMBERED D.L. LAST, If this is not observed, the programme
L NOT V/ORK.

An '‘Initial Pack" (see 10.5) should be placed before the first triad, and the pack is
n ready to be fed into the computer.
4 PROGRa.SISS REQUIRING THE PRIM.

If it is necessary, because of the number of instructions required for the programme, to
re parts of it on the magnetic drum until required, it is always advisable to store ALL the
gramme on the drum as it is read into the machine and then fetch it back into the high
ed store as required.

A programme has bean prepared (ZI49T) to perform all necessary initial functions, read
ads of instructions onto the track defined on the top row of the triad, and finally, when
triads have been read, to bring those tracks defined on a parameter card down into any
cified delay lines and enter at any required point.

All that is required of the programmer is that he shall label each triad with the track
ber cm which it is to be written (track number punched xP^ on the Y row of first card of
ad,) and punch a parameter card to stipulate what tracks go in which delay line and where
programme starts.
He assembles his pock in the following order:
(a) A copy of ZF49T.
(b) His triads for the drum labelled correctly.

■ (c) His parameter card.
On reading tills pack into the machine the drum will be filled, the required delay lines

led from the drum, and the first instruction of the programme sent to control to be obeyed*
5 INITIAL PACK.

All programmes for DEUCE must start with an initial pack, in order to set the machine
o a standard state before any programme starts.

The programme ZB49T starts off with three cards which put the machine into a suitable
tial state, and these three cards may be used in front of any programme. If delay lines
y are to be filled, these three cards should precede the triads of instruction. If
9T is used to fill the drum, they will automatically be included.

The initial pack ensures that we have an even minor cycle for m.c. 0, that the triggers
. and TCB are off, that all trades of the magnetic drum are cleared and that track 15/15
tains a "clock track". The clock track consists of a in minor cycle 16 of track 15/15»
. is used for certain programming aids like POST MORTEM and RESTORE CONTROL. is selected
that is not used in instructions, so the track may be also used for instructions, in which
e a P31 should be punched in m.c. 16 of the relevant triad. Track 15/15 should never be used
■ data storage.

D ICS2

10.6 POINTS TO NOTE.
(a) The reader should always be switched off by the first instruction, of the programme

unless data is to be read inmediately. The safe rule is that if you are in doubt SWITCH IT GEF
N.B. If ZHf9I is used to read to the drum, the reader will automatically be snitched off*

(b) Whilst a programme is being read, the instruction staticise? lights on the control
panel should maintain a steady cyclic rhythm. Any error in the filling instructions or in the
order of the cards becomes immediately apparent by the breaking up of the rhythm, and
indicates the approximate point at which the trouble started.

If the lights are not observed, the pack will probably all pass through the reader (as
it needs a 9-2¾. instruction to stop it) but the programme will not be stored correctly and the
wrong instructions will «iter control. Ey this time, the evidence of the source of trouble
is gone, and all the programmer knows is that "something is wrong", leading to a complete waste
of time.

If on the other hand, the 'STOP· key on the reader is operated as soon as signs of trouble
are noted, the region in which it occured is localised leading to an easier detection and
correction. Remember, if the reader is stopped during reading and it is found to be in fact
operating correctly, the RUN IN key will restart it without losing anything.

-10.03-

DICS2

11

LEDTURE 11.

FETCH ARP STOKE ROUTINES

11.1 INTRODUCTION.

The DEUCE sto re i s sometimes re fe rre d to as a m u lti- le v e l s to r e because o f i t s
discontinuous n atu re . E a r lie r le c tu re s have shown th a t the mercury s to r e c o n s is t s o f s in g le
ward l in e s , double and quadruple word l in e s and long delay l in e s * D ata must be sto re d in the
long delay l in e s in b locks o f 32 words. On the drum th ere a re two le v e ls o f referen ce to a
tr a c k , a head number and a s h i f t number. In any p r a c t ic a l problem i t i s u n lik e ly th a t d ata w ill
be provided in convenient blocks o f 32 and some means must be provided to make the p h y sica lly
discontinuous storage system o f DEUCE appear, from a programming poin t o f view, a s a continuous
s to r e . Any sequence of in stru c tio n s which e x tra c t words from one or more long delay l in e s
su cce ss iv e ly i s known a s a FETCH rou tin e and sequences o f in stru c tio n s f o r p lac in g words in
su cce ssiv e sto rag e lo c a tio n s o f one o r more D .L .s i s known a s a STORE ro u tin e . S im ila r ly there
e x i s t sequences o f in stru c tio n s f o r s ta r in g d a ta in blocks o f 32 words on su cce ss iv e track s o f
the drum and brin gin g su ccessiv e trad es o f the drum in to the high speed s to r e . Such sequences
o f in stru c tio n s a re known a s magnetic Fetch and S to re ro u tin es .

11 .2 CONTINUOUS FETCH FROM ONE DELAY LINE.

I f d ata i s stored in one delay l in e and i t i s requ ired to bring su ccessiv e words from the

■ W d elay l in e in to the temporary s to re f o r arithm etic operations the follow ing sequenoe o f
in stru c tio n s may be used.

To fe tc h N items su cce ss iv e ly from D.L. A. (N S? 32)

(a) N - n

(b) ____________ ; 1

(o) [1 - 1 3 I i s A - 14
(d) | 1 3 - 0

(e) Q (Ap - 14)
(f) | 2 8 - 2 5

(g) | __ 13 - I

(h) j Arithmetic j
I I In stru c tio n s J

(j) j n - 13
j 2 7 - 2 6

! 13 - n
J 1 3 - 2 8
! /
j n z / z V v

(k) | D.L. B |
l tran sfe rred
i Ij to D .L. A

-1 1 .0 1 -

BECS2

Notes.
(a) Set a working counter n at the initial value N.
(b) Set a working instruction I at an initial value IQ.
(c) Transfer I to TS 13·
(d) Obey I using Destination 0.
(e) Remember to code I from the Quasi minor cycle, and not from the minor cycle in

which I is originally stored.
(f) Add Pj η to the wait number of the instruction.
(g) Replace the modified instruction in the working storage location*
(h) A block of processing instructions using the word which has been fetched from D.L.A
(j) Count off the words. Reduce the working counter by one and replace it in its

working store. Test if the counter is reduced to zero.
(k) If the same sequence of instructions is required again on other data, the data must be

transferred to D.L. A and the working counter and working instruction set at the
initial values.

Mien single words are brought successively from a delay line they must be transferred to
a TS since these are the only stores which can cover all minor cycles. An examination of the
above sequence shows that two counting operations are taking place, in the wait number of the
instruction which undergoes modification and separately in the counter n. It should also be
noted that it is necessary to replace the working instruction and the working counter by oopies
of the original instruction IQ and the original counter N each time the loop is entered afresh.

These objections can be partially overcome by an alternative scheme, which will be
illustrated as a STORE routine.

To Store N successive words in D.L. A (N ^ 32)
(a) 3 0 - 1 5 ' .

(b) 1 1 - 1 3 I is (14 - A)
(o) 15 - 25

(d) [/ 3 ’ ° nj Q (14 - Â,)
(1 5 - 1 3
> 2 8 - 2 5
(1 3 - 1 5

(HE»,- 14 ,
(f) (17 i(2 6 - 2 8

H Z Z ^

(g) | B1 [(g) B2 < j
Notes. ! ί1 ■ 11 ■ i

(a) A counter is kept at P ^ position in TS 15* This instruction sets the initial
value at zero.

(b) Basic instruction sent to TS 13.
(c) The current value of the counter is added as WAIT number to the instruct! <.

-11.02-

DB0S2

(d) The modified instruction is obeyed using D.O.
(e) The counter is increased by ready for the next operation.
(f) NPjy is compared with the current value of the counter to detect when all words

have been stored in D.L. A.
(g) After the counter test the blocks and Bg represent sequences of instructions for

other work in the programme.
This sequence of instructions has the advantage that only one counting operation is used

and the basic instruction I is never altered in the position where it is stored. This
instruction is brought from its storage location, obeyed from TS13 as a modified instruction
but the modified copy is not re-stored. Instead, the counter in TS15 is used as the modifying
parameter and this is increased in successive trips round the loop.

The TS storage locations are so useful that it may be necessary to keep the counter in
a long delay line storage location. When this is necessary the instructions would first
appear on an outline programme as

J----------130 - n |
■" ■h -----\ !
' 1 - 1 3 l

J I n - 25 ■’
, 1 3 - 0 !

I Q (14- 1
• n - 26 '
1 28 - 25 [
I i, 13 - n 1

' ^ , 7 - 26 \
I 1 3 - 2 8 |
1 / \ i!____ nz/ _z j

11.3 TO FETCH ITEMS SUCCESSIVE!!· THROUGH SEVERAL DELAY LINES.

When data is stored in a continuous manner through a succession of delay lines some
device must be employed to change the SOURCE number of the FETCH instruction after every 32
operations. The following sequence of instructions is usually employed.

(a) 30 - 15

(b) ̂ 1 - 1 3 I is (A - 16)
(c) 15 - 14
(a) 14 - 25
(e) 23 - 14 (21 m*c.)
(f) 24 - 14 (4 m.c.)
(g) 14 - 25

1 3 - 0
(h) Q (S - 16)

(1 5 - 1 3
(j) [2 8 - 2 5

-(1 3 - 1 5
(NP.7 - 14

^ £ 2 6 - 2 8

nz z
Repeat Loop repetitions

complete.

-11.03-

DKJS2

The clue to this routine lies in the use made oi digits P^p to in the counter held
in TS15» When the counter, originally aero, is increased by 32 a digit appears in P^g
position, (counting is taking place at P_| ̂). This is the indication that the SOURCE number
should be increased by cnc. To extract the digits at P22 position, the counter is transferred
to TS14, shifted down 21 places leaving only digits which were present at or above Pgg. These
digits are next shifted up to the P,. position (the SOURCE position in an instruction word) and
added to the instruction before it is obeyed.
Motes on the routine.

(a) Set the initial value of the counter modifier at 0P^.
(b) Basic instruction transferred to TS13.
(c) Counter transferred to TS14-
(d) Counter added to instruction in P17 position.
(e) Remove all digits below P^g.
(f) Shift up remaining digits to P,. position.
(g) Add remaining digits to SOURCE position of instruction.
(h) Obey modified instruction. V.
(j) Increase counter in TS15.
(k) Test if all items dealt with·

11.4 TO STORE SUCCESSIVE ITEMS THROUGH SEVERAL DELAY LINES.
The fetch routine of 11.2 is simply modified to change it to a STORE routine. This time

the DESTINATION number of the modified instruction must be increased after every 32 operations.
The instructions are

30 - 15
j r ---------------- i
* 1 - 1 3 I is (16 - A)

15 - 14
14 - 25
23 - 14 (21 m.c.)
24 - 14 (9 m.c.)
14 - 25
1 3 - 0

Q (16 - D)
15 - 13
23 - 25
13 ~ 15

NP1 7 - 14
26 - 28

Repeat Loop repetitions
complete,»

The only difference is seen to be in the length of transfer of the 2 4 - 1 4 instruction. In the
FETCH routine this shifts the contents of TS14 up to the SOURCE position by 24 - 14 (4 m.c.)
whereas the STORE routine shifts the contents of TS14 up to the DESTINATICiN position by
24 - 14 (9 m.c.). These two sequences for Fetch and Store are combined in DEUCE Subroutine Bd.

-11.04-

DBCS2

11.5 TO FETCH SUCCESSIVE TRACKS PROM THE IteGNETIC DRUM STARTING· AT TRACK TQ.

It was pointed out in the lecture an the magnetic drum that a number TP^ representing
a track number on the drum may be considered as AP^ + BP^ where A/D is the alternative
designation of the track.

e.g. T = 189 or A/B = 1 1 /13

TP = 1011 l(1101

= B 1 AI

All magnetic fetch and store routines make use of this in modifying two instructions, a D31
to shift the heads and a D30 to read or write.

The instructions are:-
(a) TN - 14 TN is TP1
(b) I, - 15 X1 is (0 - 31)
<°> P5-6" 15
(d) 25 - 25
(e) S ' 0

} Q (A+ - 31)
J (f) 24 - 14 (4 m.c.)

(g) I2 - 13 I2 is (0 - 30)
(h) 25 - 25

(1 3 - 0

^ [Q (B+ - 30)
(k) 23- 14 (4 m*o.)

(1 4 - 1 3
> 2 7 - 2 5
(14 - TN TN now (T + l) P1

Notes
(a) Track number sent to TS14*
(b) Basic shift instruction to TS13·
(c) C o lla te digits in SOURCE position to TS15·
(d) Add AP^ to Basic instruction.
(e) Obey modified shift instruction.
(f) Shift up Track No. to P^ position.
(g) Basic Read instruction to TS13.
(h) Add BPj. to Basic instruction.

(j) Obey modified instruction.
(k) Shift down Track number to position again.
(l) Increase track number and store it awgy.

-11.05-

EPCS2

11 .6 A COMBINED READ - WRITE MAGNETIC FETCH AND STOKES ROUTINE.

The sequence described in 11.4 can be used for either Read or Write depending cn the
characteristic of the magnetic instructions. A routine in which the characteristic is
introduced separately permitting the same basic instructions for Read and Write is new given.
This routine has two entries for the separate functions.

Track number TP^ is in TS14.

WRITE

P5-8 ^5-8 +

11 - '13 I1 is 17 - 30
15 - 25
25 ~ 25
1 3 - 0

Q (A+ - 31)
24 - 14 (4 sue.)
12 - 13 I2 is 17-29
1 5 - 2 5
25 - 25
1 3 - 0

Q (B+ - 30)
23 - 14 (4 m.c.)
1 4 - 13
27 - 25
13 - TfT

The secret of this sequence lies in the instructions 15 - 25. Through the Read entry this
converts basic instructions 17-30 and 17 - 29 to 0 - 31 and 0 - 3 0 respectively. Through
the WRITE entry where a ,- is now present the instructions are converted to 0 - 31 (l) and
0 - 3 0 (1).

The instructions
15 - 25
25 - 25
1 3 - 0

Q ()

occur twice in the routine and the same instructions are used on both occasions.
11.7 TO FETCH SUCCESSIVE WORDS PROM THE MAGNETIC DRUM.

The drum may be considered as a continuous word store with word addresses ranging from
0 (for the word in m.c. 0 of track O/O) to 8191 (for the word in m.c. 31 of track 15/15).
Word addresses stored at P ^ position may be used to modify instructions and fetch successive
words from the drum.

-11.06-

EECS2

Ths sequence of instructions is
(a) YM - 14 (W.N TOED NUMBER x P^)

14 ~ 13
(b) 23 - 25

15 - m

(c) ΙΛ - 13 I, is (11 - 16)
^17-21 - 15

(d) 25 - 25
1 3 - 0

Q30 (11 - 16)
(e) 2 5 - 1 4 (k) IKEPAEE ΞΊΤΗΤ

26 - 28 /
/ \ w = 31 /

/ \ // nz z
/ X /

; W £ 31 (f) M - 14
| (g) 23 - 14 (21 nwo.)

12 - 13 I2 is (0 - 31)
! M P5-8 - 15

y 25 - 25
! 13- 0

Q(0 - 31 s)
13 - 13 I3 is (0 - 30)

: GO 24 - 14 (4 ».c.)
1 2 5 - 2 5

1 3 - 0
Q(0 - 30 s)

Notes
(a) TOED number x P ^ to TS14*
(b) Increase YiOED number and re-store.
(c) Delay Line fetch instruction to TS13*
(d) Add wait number and obey to fetch word to TS16.
(e) Test if 32 words fetched and if so : -
(f) TOED number (updated) to TS14·
(g) Shift A P + BP22 to AP^ + BP^ position.
(h) Modify shift instruction and obey.
(3) Modify Eead instruction and obey.
(k) A track must be down in the high speed store before a word can be fetched.

By entering at the point indicated on the first occasion the correct first
track is brought dcv;ne

DPCS2

-11 .07-

-11.08-
11.8 TO STOKE SUCCESSIVE Ϊ/OKPS ON THE MAgTSTIC DRUM.

Slight modifications to the Fetch routine may be made to change it to a Store sequence.
The instructions are

Notes

(a) The Yford number in TS14 i s the co rrec t one (see fe tc h rou tin e) and the in stru c tio n

here tr a n s fe r s DL 10 to DL 11.

(b) , (o) , (d) and (e) a re concerned with the lo g ic which decides whether i t i s
n ecessary to w rite up the l a s t track . I f 1 0 ^ i s non zero a complete track has ju s t been
w ritten up, i f 1 0 ^ i s zero the l a s t track has ju s t been w ritten . The counting sequence (d)
decides when a l l words have been w ritten in BL 10. I f DL 10 i s only p a r t ia l ly f i l l e d th is
incomplete track must be w ritten up cn the drum. In the event o f the number o f words being
a m ultip le o f 32 the l a s t track w il l have been w ritten up by the normal method and the
in stru c tio n 10Q - 28 prevents an e x tra track o f zeros going up to the drum.

-11.09-

12

-12,01

SUBROUTINES.
12*1 INTRODUCTION.

DEUCE or any other computer has a strictly limited number of different instructions
which it can perform, and its virtue lies (i) in the speed with which it can perform this
limited repertoire of instructions and (ii) that its range of instructions is so fundamental
that it is always possible to break down any well defined requirement into a sequence of
simple DEUCE instructions which perform the same operation* For instance the multiplier on
DEUCE only gives the correct product if the two numbers being multiplied together are positive*
If they may be negative, not one instruction (0 - 24) but 8 DEUCE instructions are necessary
to produce a correctly signed product. Similarly, to calculate a logarithm takes about 40
DEUCE instructions*

If a programmer wishes to calculate signed products or logarithms over and over again
in the course of his programme, the fact that he has to use 8 or 40 DEUCE instructions each
time would use up far too much instruction space, and so he uses a SUBROUTINE, which is a
device which enables him to have the necessary sequence of instructions only once in his
programme, «nd to jimp into that sequence of instructions wherever he needs, and to return
to his main programme, at the appropriate point, when the sequence has been obeyed.

Firstly then a SUBROUTINE saves storage space. It does much more, for a large library
of proved subroutines exists and in using them the programmer knows that he is using a sequence
of DEUCE instructions which is fully tested and probably faster and more economical in the
use of storage space than he would make it himself.

Since a DEUCE instruction usually specifies exactly its successor (by means of NIS and
T in the instruction word) it is dear that some 'trick’ will be necessary in using a
subroutine if the next instruction after the subroutine is to vary with each entry to the
subroutine. The ’trick’ is as follows:- each subroutine has associated with it a store (usually
a short D.L.) in which the programmer is to place the instruction which he wishes to have
obeyed when the subroutine is finished. This instruction is called the link* The subroutine
itself is so arranged (i) to transfer the link to a fixed storage space, usually 1^q and
(ii) to go to that space, 1 q̂ on completion of the instructions in the subroutine. In this
way the subroutine can be obeyed over and over again, jumping back to the main programme each
time at a point defined by the link* Let U3 now look at subroutines in more detail, outlining
the rules which must be followed in using them.
12.2 OPEN SUBROUTINES.

An open subroutine is visually defined as any sequence of instructions used for some
specific operation. For instance, the following sequence which multiplies two signed
integers in TS14 and TS16 and produces a signed product in DS21 is, as given here, an open
subroutine* (We shall examine later the reasons for our particular choice of coding):

(N.B, This is not the most efficient
method of performing this operation
but serves as a simple illustration).

DFCS2

Because each insi--otion in DEUCE specifies its successor uniquely (by virtue of the
timing number) , it would appear that the above sequence would have to be recoded if it were
to be used a second time in the programme. In fact» this difficulty is overcome by the
following simple device·
12.3 CLOSED SUBROUTINES»

Suppose we add the instruction 15 - 1 jq to the beginning of the sequence and call 1̂ q
at the end thus:

221 15 " 130
223 30 - 212

231 * 13-23 3

130
Now each time the sequence is required we have only to place a new instruction in TS15

and in the subroutine. Since the new instruction will be obeyed each time at the end
of the sequence from 1^ , we have a completely free choice of path. The instruction planted
in TS15 is called the LINK and is the first instruction following the subroutine.

The subroutine is now considered to be 'dosed* (as a rule» the term 'subroutine*
implies that it is 'dosed').

An example of a section of programme using this subroutine is as follows:

* ·

L1 - 15
221 I Monel
L1 21 “ 1012,13
*T

wm

L2 - 1g
221 I
L2 21 - IOq ^

«»

L^ - 15
Imuu l

l 3 21 “ 1014,15

· ·

N.B. L^» Lg, L3 merely denote links 1,2, and 3 end do not refer to m.c.'s of a D.L.
12.4 CODING· THE LINK.

It is important to note that the LINK is not coded in the normal manner. Since the
planted instruction is actually obeyed from it must be coded as though it had been there
all along, i.e. coded 'quasi 30' (The reader will recall the case of 13 - 0 dealt with
earlier, wherein the instruction is obeyed quasi 30). Thus, L^ above would be coded

-1 2 .C 2 -

DFCS2

N, 21 - 10, d, 12, T where the next instruction is N^. The LINK is usually written on
the flow diagram as follows:

L, - 15
MULT

130 L̂1 21 “ 1012, 13̂
12.5 HIGHER ORDER SUBROUTINES.

The simplest type of subroutine is one which contains no 'sub-subroutines' within its
sequence of instructions. For DEUCE, such a sequence is called a 'zero order' subroutine.
Zero order subroutines make use of the instruction I - 0 (where I can be any store at all) ·
The link is obeyed quasi 30 (i.e. coded as if it were stored in m.c. 30) but, unlike the
example given above, specifies no particular delay line. For example, the subroutine might
put its LINK into 192*

L - 1 9 2

e

«
19* - 0

% 0 “)
A first order subroutine may or may not contain a zero order subroutine within it.

They always obey this link from (the example given in the section on coding
the link is a first order subroutine). A subroutine which contains a first order subroutine
within it ie called a second order subroutine. It will obey its link from 1^. For
example:

13 - 131

L - 13
l MULT First order subroutine

Tj ·* 1

131
Note that the first order subroutine can still be used as a subroutine in its own

right, i.e. independent of the second order routine. This is really the only reason for going
to second order* otherwise we could use the MULT sequence as an open subroutine*

Higher order subroutines use successive stores for their links, i.e. third order in 1q ,
fourth order in 1^, etc. (obeyed quasi 0, 1 etc·), but such orders are not often used.
The choice of 1 ^ , 1 ^ , 1q etc. for storage of links is arbitrary and is largely in the
Interests of standardisation.

The order of subroutines is dealt with in more detail in DEUCE News 26 (NS y 103)
paragraph 1 .3.
12.6 SUBROUTINE PARAMETERS.

Particular subroutines can often be generalised to fit a wider number of cases by
using a parameter instead of a constant in the appropriate places. For example, if we
insert an instruction 21 - 22 (l) after 2^ in the MULT routine we can make the answer appear
to a given number of binary places (which depends on the length of transfer of the 21 - 22
instruction). Some library MULT routines allow the programmer to specify the length of
transfer (by punching in the appropriate wait number) · In these cases 21 - 22 is a
'parametric' instruction and the wait number is a 'parameter'.

-1 2 *03-

DPCS2

If the parameters vary in a programme we must take care to replace them during the
programme and to restore the original values in the case of Loop Calculations. This might
be done as follows. Suppose the parameter is now in 3^* A c0Py of this is placed in 4^»
say, and a variant possibly in 5^* Then it changes the parameter, the transfer

512 " 312
is used, and to restore the original

S 2 ” 512
is used. (Remember that the entire word is replaced, although the parameter may be only a
part of this word).

It is advisable to mention here that library subroutines are, in general, available
in all D.L.'s. For example, a 3 D.L. subroutine will be coded in D.L.’s 2, 3» 4j 3, 4» 5}
4, 5,6,} 5» 6» 7} and 6, 7, 8. The first D.L. of each set is known as the position of the
subroutine.
12.7 CODING- OF SUBROUTINES.

If a subroutine is going to be obeyed many times in a programme it is worth taking
considerable care in coding it to be as fast as possible. The MULT example is deficient
in this respect since there is a big gap between and 1̂ q · (Note that between and 2^
two m.s.*s must elapse). It is also useful to code subroutines with the instructions packed
neatly together. In the same example the instructions have been packed into 2^ _ ^
(Packing the instructions is important in library subroutines but not so necessary in private
subroutines) · Coding for speed and space are to some extent contradictory and a compromise
usually has to be made.
12.8 SUBROUTINE REPORTS.■ w n — I ■ ■ ■ ! 1 ' ■ ■ m m · «η·»

Subroutine reports are written in a more or less standard layout as can be seem by
inspection. There are however, one or two points which require mention.

(i) The order of the subroutine is always given under the sub-heading "Description".
(ii) The subheading "Uses" lists the lower order subroutines required* In general

these are not included in the punched cards, nor are the parameters listed. It is in fact
a good plan to refer to the reports of the lower order subroutines vised to make sure that
parameters are not forgotten, that any special rules are being obeyed, etc. "Uses" may
also include 13 - 0 in 12g· This must also be provided by the programmer.

(iii) A good subroutine will have built in "failure" instructions i.e. if the subroutine
is given data outside the range for which it will work then it obeys or stops at specified
instructions. Many subroutines describe the action to be taken when this happens, e.g.
subroutines that read decimal cards will usually read the card again.

(iv) The "Stores Used" section lists the short stores used by the subroutine, (it
sometimes also gives minor cycles of D.L.'s used as tenporary stores).

Example.
Stores Used. 13 14 15 1 ¾ 21 11
Contents at Entry. a LINK b - - -
Contents at Exit. - - b - c -
This means that TS13, 14, 15, DS19g, DS21 and D.L.1 1 are used by the subroutine. Before

entering, a, b and the link must be planted in TS13, 15 and 14 respectively and the contents
of 192» 212 ar*cL 21 ̂are irrelevant (they do not have to be zero); and after leaving the
subroutine DS21 contains the result (double length), TS15 still contains b, and TS13, 14, ^81¾
and 21 contain nothing of importance. (They are not zero) .

-12.04-

DPCS2

-ΐϋ.υρ-
(ν) The section "Occupies" consists of a list of the D.L. *s and minor cycles punched

in the cards. It does not, in general, include the D.L.'s used by the lower order subroutines
nor, sometimes, the D.L.'s used as temporary stores (These may come under "Stores Used").

(vi) The "Entry" is the location of the first instruction in the subroutine. In our
"MULT" example this is *

(vii) "Parameters" have already been dealt with. Probably more mistakes in using
subroutines arise through incorrectly punched parameters than through ary other cause.

(viii) A most important point about reports is that they always refer to the copy in
position 2. This must therefore be taken into account when the subroutine is being used in
any other position. This applies particularly to the sections "Parameters" and "Entry" ·
12.9 THE NUMBERING· SYSTEM.

Each subroutine has four types of number associated with it.
(i) A serial number.
(ii) A report number (of the fora NS t xxx or Κ/ΑΑ t xxx)
(iii) Figure sheets numbers (each flow diagram or coding sheet has a number of the

form S6/xxxxx).
(iv) A code number.
The first three are not usually the concern of the programmer who generally refers to

subroutines by the code number. This consists of four parts: a category letter, a serial
number within that category, a modfiying letter if the subroutine does not deal with single
length binary numbers and a stroke number if the subroutine is a modification of an existing
subroutine.

Example.
(a) D01 is the first division subroutine.
(b) P1JF/4 is the thirteenth punch subroutine, it works on Floating numbers; and it

is the fourth modification of P13F. The code number for programmes is similar except that
there are two category letters at the front.

A full list of categories and modifying letters can be seen in the latest list of
subroutines and programmes.
12.10 THE SUBROUTINES IN THE LI CRAPY.

It is rather difficult to try and pick out which subroutines are important since
importance depends largely on the type of programme being written. The programmer is advised
to consult the latest list of subroutines to see just what is available. This list will also
tell him which subroutines have been superseded and will indicate if there is another
subroutine which may be more suitable.

At the risk of diverting attention from other subroutines which may be equally
important, the following are considered to be worth noting:-

A13F-A16F: Floating Point Arithmetic.
B08/1 & B14: For Fetching Programme from the Drum.
D05 & D20M: Division.
MOA/I: Multiplication.
P & R Subroutines for Reading Decimal Cards. Most card layouts can be read

or punched but it is a good plan to consult the tabulator operator
before deciding on a particular layout.

12.11 NEW SUBROUTINES (AND PROC-RAMES).
When subroutines (and programmes) are submitted for publication in the library it is

a great help if these are written up in the standard form. This is not difficult in the

DPCS2

- 1 2 io 6-

case of subroutines it is mainly a question of checking, from DEUCE News 26, paragraph 1 .4,
whether all the information has been included· Subroutines should naturally be thoroughly
tested, especially with limiting values. (Zero is & value which commonly upsets a subroutine)·
In the case of programmes it is more difficult to specify a standard layout since they differ
so widely. Fairly good examples are FP08, LE06, ZP34T (Nos. 367, 352 and 314).

Further notes on this subject can be found in DEUCE News 26, paragraph 1,5 and 27,
paragraph 10.

DPCS2

13

-13.01-
LECTURE 13.

ANCILLARY EQUIPMENT.

13.1 PUNCHED CARDS.
Whilst cards provide only a means to an end, too much emphasis cannot he placed on

correct care and handling. Maqy hours of confuting time may be lost and much anxiety caused,
by failure to observe the few simple rules described here. It should be remembered that
computer time wasted through careless card handling is charged for.

Generally, cotrputer time is at a premium and it is most frustrating when allocated a few
minutes programme testing time, to find that the programme cannot be read into the machine
because of mis-shaped cards. This is generally because cards have been:-

(a) L e ft on a desk or window ledge in d ire c t su n lig h t*

(b) Carried around in a pocket.
(c) Exposed to damp.

(d) Stored near radiators.
Wherever possible cards should be stored in a standard tray and supported by a spring

type card support.
It is permissible to use rubber bands to hold together small quantities of cards: the

best size for this purpose is made of 1/16" dia. rubber, the band itself having a diameter of
2-j". These should not be twisted several times around the cards but used singly and kept away
from the centre section. The centre of the card is most critical since this section has
about 3th" tolerance when passing through most machines,and the slightest indentation in this
section will cause misfeeding.

It should be stated at this point that writing on the top edge of a pack of cards
produces bad indentations.

Packs of cards should always have the programmers name and title of the job written on
the face of the top card. All cards within a batch should be serially numbered, preferably by
punching, in order that they may be sorted mechanically into sequence, in the event of them
getting out of order. (A method for mechanically numbering a pack of cards will be described
later).

Where trays are used for storing cards, the trays should be labelled with full details
of contents. If several packs of cards are filed in one tray then these should be divided by
tagged guide cards, with identification data written on the tag. Guide cards are supplied with
tags in five horizontal positions.

Cards are supplied in various colours with a variety of colour stripes. The convention
for using these is published in DEUCE News No. 1 and No. 32.

Generally speaking the main card used for programmes is the instruction card with a
green stripe: if the programme has several sections, then these may be defined by using cards
with a blue stripe or in solid green. On no account must the following instruction cards
be used for general work as they are reserved for libraries; Pink Stripe, Orange Stripe,
Solid Yellow, Solid Pink.

Input data, wherever practicable, should be punched into buff cards, but several colour
stripes are available as alternatives. Cards with stripes are more expensive than buff,
consequently larger stocks of buff cards are maintained.

DPCS2

-13.02

Two types of output data cards are available, red stripe and green stripe. Large stocks
of red stripe are maintained, green stripe to be used as an alternative e.g. Binary output,
green stripe, decimal conversions, red stripe.

Violet striped instruction cards are available for programme display and are reserved
exclusively for this purpose. The practise of punching out Programme Display into red or
green striped cards and subsequent reproduction into violet striped cards for ease of reading
is extremely wasteful and is not to be recommended.

Stocks of cards are stored in cabinets located near to machines wherever the demand for
a particular type of card is the greatest. Where several trays are used to accommodate a
certain type of card, commence using from the top tray of the group and work downwards. On
emptying a tray, invert, and replace, handle first.

Having removed a few cards from a tray, always ensure that the cards remaining are clamped
tightly with the support provided. Failure to do this permits the cards to distort and
subsequently causes card feeding troubles.

On completing a session on a machine, remove all cards, punched or otherwise. Special
bins are provided for waste cards only. Waste cards have a much higher value than ordinary
waste card or paper.
13.2 HAND PUNCHES.
Operation.

(a) Set swivel stop so that the pointer on the card carrier is stopped at the column
from which it is required to start punching.

(b) In order to skip over unpunched fields of the card, set skip stops on columns
where it is required to recommence punching. Care should be taken of unwanted skip stops.
Generally it is possible to fit them to the skip bar in positions where they will not
interfere with punching operations.

(c) With card carrier pointer at column 80 left hand places card into bed of machine,
ensuring that the card is flat and held by the clip on the card carrier.

(d) Card carrier is moved up to the swivel stop by the left hand. If too much
force is used, swivel stop will be strained and punching will start in the wrong column.

(e) Decimal punching is performed by the second finger of the right hand, supported
by the forefinger and thumb. This should be a key tapping operation rather than key
pressing.

(f) Right hand removes completed cord from the feed bed.
NOTES. Left hand must not hold card carrier during punching as this causes

"off punching".
"Off punching" is a shift right or left of the punching from the centre of a card

column. Off punched digits will usually cause reading failures in subsequent machine operations.
In cases where off punching is suspected the card should be placed onto a card gauge,

the card located, with Col. 80 angled by the right hand corner frame of the gauge.
Alphabetical Punching.

Several codes are in existence for the recording of alphabetical character's in cards.
The code is determined by the type of equipment to be used, the usual criterion being the
make and type of tabulator.

DPCS2

-13.03-

These codes usually consist of two punchings in one column of a card to provide one
alphabetical character i.e. a zone digit Y, X or 0 combined with one of the digits 1-9 as
follows:*·

IBM FOUR ZONE ALPHABETICAL CODE
ZONE DIGITS

NUMERIC DIGIT Y X 0
m m

1 A J -

2 B K S
3 C L T
4 D M u
5 E N V
6 P 0 w
7 G P X
8 H Q Y
9 I R z

HOLLERITH POUR ZONE ALPHABETICAL COKE
ZONE DIGITS

NUMERIC DIGIT Y X 0
1 A B c
2 D Ξ P
3 G H I
4 J K L
5 M N 0
6 P Q R
7 S T U
8 V w X
9 Y z -

The spare position in each code is reserved for special symbols and depends on the
specification of the machine that prints this information.

N.B. The alphanumeric code for the 80 column input-output unit on DEUCE Mk.II is
based on the IBM 4-zone code.
Sterling.

Pounds are usually punched one card column for each digit required. Tens of shillings
one card column, units of shillings one card column. Pence one card column, with X = 10d,
Y = 11d.
Card Jams.

If a card becomes jammed in a punch, press all of the keys in turn, if the card does not
clear, tear off card at point where now fully perforated and attempt to remove from other
end. Card will usually come clear.

In the event of a small piece being left behind, use tool called "scraper" to remove.
Small saw edge is provided on scraper, to saw away badly jammed pieces. All bits of card must
be removed before punching can recommence.

On no account must one attempt to dismantle the machine.
DPCS2

-13.04-

13.3 HOLLERITH VERIFIER MODEL 103.
This is similar in appearance to the hand punch, and is used for checking hand

punched decimal or alphabetical data.
The keyboard layout and skips are exactly the same as the hand punch.
The machine is,in part, electrically controlled, and before operation can commence

switch on at the rear of the machine.
The verifier operator 'keys' the original information into the cards but instead of

holes being cut, sensing pins check that the "keyed" hole is present.
The presence of an error is detected when the escapement of the machine will not operate

to the next column, whereupon the operator should release the card and ascertain the error.
It will be found that correctly verified columns will be indicated by a small red dot at the
base of the column.

The machine will locate errors under the followxng conditions.
(a) More than one hole per column (excepting Alpha).
(b) A blank col. instead of a punching.
(c) A punching instead of a blank column.
(d) Wrong key depression.
(e) Off punched cards.
The skip and release key operations are not checked.

13.4 SORTER.
This is a machine which arranges decimally or alphabetically punched cards into

sequence.
Depending on make and type, machines are available to operate at speeds ranging from

25Ο cpm to 2000 cpm.
The machine has a hopper into which cards are placed (face aownwards '9' edge leading)

and 12 "receiving" pockets, one for each punching position in a single card column. A 13th
pocket marked 'R' for reject is for unselected cards.

A single sensing brush mounted in a carrier, senses the cards and directs them to the
appropriate receiving pocket. The brush carrier may be set to permit sorting on any of the
80 card columns.

The brush carrier may be moved one card column up or down by rotating the handle found
at the front of the machine. If it is desired to move over several card columns, make half
a revolution with the handle, when the card column pointer will lift from the card column
scale. The brush assembly may now be moved by depressing the finger lever at the top of the
assembly and pushed to the desired column. Complete the full revolution of the handle, so
that the pointer indicates the column to be sorted.

To sort a pack of cards into numerical sequence:-
(a) Switch on main switch.
(b) Set the brush at the least significant column i.e. units column of the field

to be sorted.
(c) Place cards in hopper.
(d) Press start button.

DPCS2

-13.05-

(e) Cards vd.ll then be d istr ib u te d between pockets 0-9 .

(f) Take cards out o f 0 ' s pocket (r e ta in face down).

(g) P lace on top o f these the 1 's pocket follow ed by 2 's e tc . to 9·
(h) Set brush a t next s ig n if ic a n t column.

i . e . tens column and rep e at c ,d ,e , f ,g ,h u n til f i e ld completed.

So rtin g a s above w ill r e s u lt in the cards being in ascending order when face up. Should they
be requ ired in descending order, then cards from pockets should be picked up from 9-0 on
each s o r t .

N.B. cards should be s ig h t checked, by looking through the cards to check se le c tio n as

they are removed from each pocket. A lte rn ativ e ly a so r t in g needle may be passed through the
h o le s .

D ig it S e le c tio n .

Located below the brush operating handle i s a se le c t io n drum; mounted in the drum are
12 sm all b lack switches, one fo r each row p o s it io n o f a card . I f a switch o r sw itches are
pushed to the centre o f the drum, then se le c t io n fo r these p a r t ic u la r pockets i s made
in operative and cards o f th a t p a r t ic u la r d esign ation p a ss in to the r e je c t pocket.

I t w ill be seen therefore th at i f i t i s d esired to s e le c t a p a r t ic u la r d ig i t from a
p a r t ic u la r card column th is may be accomplished without d istu rb in g the order o f the remainder
o f the ca rd s.

A lphabetical So rtin g .

This i s done by again s t a r t in g a t the l e a s t s ig n if ic a n t column, but in th is instance
each column needs to be so rted twice - one p a ss to so r t them in order o f numeric d ig i t s and

a second to so r t them in order o f th e ir re sp ectiv e Y, X and 0 zones.

NOTE. When there are two o r more h o les punched in one column, the so r te r w ill
always se le c t the f i r s t one i t reads from 9 through to Y, u n less th a t p a r t ic u la r pocket has
been made in operative by the sw itch on the s e le c t io n drum.

On the se le c tio n drum, in add ition to the 12 b lack sw itches there i s a la rg e r red one;
i t s fun ction i s , when pushed to the cen tre , to elim inate a l l the pockets 9~1 and. therefore
used when so rtin g the cards to a lp h ab etica l zones.

Having sorted on zones the cards are taken out o f the pockets in the sequence Y, X and 0 and
the brush turned to the next most s ig n if ic a n t column, remembering to rev ert the red switch
to permit so r tin g on the numeric zone.

Card Count.

Some so r te r s a re f i t t e d with a switchable card counting dev ice , which counts the number
o f cards p assin g through the se le c t io n un it o f the machine. I t s use i s lim ited and optional
but i s u se fu l fo r counting the exact number o f cards in a pack. This may be done with the
so r te r brush ra ise d to elim inate the p o s s ib i l i t y o f d istu rb in g th e ir sequence.

13.5 REPRODUCER.

The two main functions o f th is machine are defined as fo llow s:

Reproducing.

I s the copying o f punched data from one s e t o f cards in to another s e t , card fo r
card.

The copying need not be column fo r column, and inform ation may be elim inated or
transposed a t w i l l . The two s e t s o f cards may a lso be autom atically checked.

DPCS2

- 1 3 .0 6 -

DPCS2

-13.07-

Gang Punching.
Is the automatic transfer of punched data from one card into a number of others.
Both of the above functions are carried out at a speed of 100 cards a minute»

Operation.
The machine may be divided into two main sections as follows (refer to schematic

diagram, Fig. 1.)
Reading Unit consists of
(a) Hopper.
(b) 5.X. Brushes internally c onnected to plugboard.
(c) 80 Reading Brushes internally connected to plugboard.
(d) 80 Comparing Brushes internally connected to plugboard.
(e) Stacker.

Cards placed in this feed pass under the X Brushes, over the Reading and Comparing Brushes
and into the Read Stacker.

Punching Unit consists of
(a) Hopper.
(b) 6.X. Brushes internally connected to plugboard.
(c) 80 Punch knives (Magnets) internally connected to plugboard.
(d) 80 Punch brushes internally connected to plugboard.
(e) Stacker.

Cards placed in this feed pass under the X Brushes, Punch knives, and over the Punch Brushes
into the Punch Stacker.

If cards are placed in both feeds (pack to be copied in the Reading Feed) they will
feed, move and stack in unison. The sections in each feed are not associated unless connected
by plugging.

Cards are normally fed through the machine, face down Y edge leading.
Switches.

Machine is switched on by a main switch located to the right of the punch stacker.
The card 'running key' is located to the left of the reading stacker and covered by

a hood. This key must not be operated until the green generator light, mounted above the
plugboard, comes on.

The 'stop key’ is located to the left of the 'running key* and the machine may be
stopped at any time by holding down this key.
Reproduce Switch.

This consists of three switches coupled together, by a bar, and located below the
* card running' key, and switched on when reproducing. The switch introduces interlocks to
both feeds, and causes the feeds to operate in unison, checking that each of the card stations
i.e. Hopper, Reading Brushes, Comparing Brushes of the Reading Feed are in an identical
state with the three stations of the Punching Feed.

An unequal state of any two opposing stations will cause the machine to stop.

DPCS2

-13.0ο-

(a) If one of the hoppers runs out of cards. The action to be taken here is to
replenish the empty hopper, or to remove the excess cards from the o ther.

(b) A bad card failing to feed forward from the hopper to the first station. If this
occurs, correct card, by straightening or repunching,replace in the hopper, md press 'running
key'.

The machine will then take one cycle to feed the card to its appropriate station and
will then automatically revert to reproducing.

N.B. After a card feed failure, check also the card following the bad card.
Gang Punch Coroare.

This is a single switch to the right of the 'reproduce' switch. With this switch on,
the interlocks between the two feeds are removed and permit each ifeed to operate independently
of the other. It's main function is to permit Gang Punching to take place from the Punching
Peed, whilst previously Gang Punched cards are compared in the Reading Peed.

It is also useful if trouble arises during reproducing and circumstances prevent cards
from running out from one feed.

N.B. Do not attempt to remove cards from the machine by this means if a card jam is
suspected.

X Detail and Summary Punch.
The next pair of switches in this row are marked X Detail and Summary Punching. It is

not proposed to describe the function of these switches here. However during normal Gang
Punching and Reproducing functions these switches should be off (UP).
Comparing Only.

The last switch in this row. The normal position for this is down. If however it is
desired to compare only, two like packs of cards, then it should be switched off (UP). The
function of this switch in its 'off' position is to prevent impulses from any source from
operating the Punch Magnets.
Row Eliminate,

Usually these are situated immediately above the main operating switches. There is a
switch for each row of the card. If a switch or switches are in their 'off* position (UP)
then reproducing and comparing for that row or rows, will be eliminated.

Generally there is a signal light which operates in conjunction with the switches.
The light gl . hen any of these switches are in the 'off* position.
Stacker Switch.

Will stop machine if stacker is full. Remove cards from stacker and press 'running'
key to continue.
Plugboards.

Certain standard plugboards are available e.g. Reproduce and Compare the full
80 columns. Reproduce and Compare the 6l+ columns of the DEUCE fields. Reproduce and Compare
old 32 column DEUCE field into Alpha field etc.. These boards always remain plugged.
Other boards are available for plugging non-standard jobs.

Care must be taken when inserting plugboards into the machine. Firstly ascertain
that they are inserted the correct way up i.e. with the flanges on the board at the top.
Serious damage can result from boards being forced into the machine upside down.

DPCS2

■13-09-

,,/*■

DPCS2

REPRODUCER TYPES 200, 201, 202HOLLERITH

■13.10

DPCS2

UK Form 25-5304

AUTOMATIC REPRODUCING PUNCH, TYPE 513 CONTROL PANEL
FOR SUMMARY PUNCHING-ALPHAUETIC ACCOUNTING MACHINE

-13.11-

Care must be taken that plug wires are not trapped when locking the board home.
Machines should not be left without a plugboard.

Plugging for Reproducing. (Refer to Plugboard Diagrams, Figs. 2 and 3).
Section (l) of diagram illustrates the plugging required in order to reproduce data

from columns 1-4 of a punched card into columns 1-4 of another card.
This may be extended as required by following the same pattern.
NOTE. The single line connecting to each set of four hubs, ie the convention employed

to eliminate excessive line drawing, and means in actual fact that four separate plugs are
used.

Section (1a) illustrates the additional plugging required to compare (verify) that the
newly punched card agrees with the original.

In the event of a comparing failure the machine will stop, and a red signal light,
mounted above the plugboard will glow. Reference to the indicator situated to the right of
the plugboard will show which column(s) are in error.

It will be found impossible to restart the machine until the handle on the left of the
indicator is ’pulled upwards’. This will reset the error indicators and switch off the indicator
lamp.

In order to visually check this error, the ’Stop Key* should be held down and the 'Start
Key' given a 'One Shot*. N.B. hold the 'Stop Key' down for the whole of this operation until
machine stops. This will have had the effect of feeding one card into each 'Stacker'. These
two cards will be the ones responsible for the error signal.

Section (2) of diagram illustrates plugging required in order to reproduce data from
columns 77-80 into columns 72-75 of another card.

Section (2a) of diagram illustrates additional plugging to compare that the newly punched
card is correct.
Gang Punching.

Section (3) of the plugboard diagram illustrates the plugging required to perform
'Gang Punching' operations. The requirement in this instance is to copy from columns
57-60 of a 'Master Card' into columns 57-60 of the required quantify of blank cards.

For this purpose only the 'Punch Feed* of the machine is used and therefore the
'Reproduce' and 'Gang Punch Compare' switches should be off.
Operation.

Place 'Master' card, followed by required quantity of blanks, into 'Punch* feed. Run in
from Card Running Key. When the 'Master' card reaches the 'Punch Brushes' the first blank card
will be at the 'Punch Knives'. The information read at the 'Punch Brushes' will be directed
via the plugwires, to operate the 'Punch Knives' and perforate the blank card. On the next
machine cycle the 'Master' card will eject into the ’Stacker' and the newly punched card will
take up the station of 'Master' and cause punching into the succeeding card etc.
Interspersed Master. Gang Punching.

This is a method of 'Gang Punching' when 'Master' cards containing differing punched data
are interspersed throughout a pack of blanks. Using the ordinary Gang Punching method
described above, each 'Master' card would be superimposed with the data from the previous
card. To overcome this difficulty a set of 'X' sensing brushes are provided. There are six

DPCS2

-13.12-

of these located immediately in front of the 'Punch Knives'. They may be set to read from
any card column. The object of them is to suspend punching operations for one card feed cycle
following the sensing of an 'X' punching, in some predetermined card column. Therefore each
•Master* card employed in this method, must be punched with an 'X' and an 'X' brush set to read
from that card column.

The additional plugging required to extend ’Gang Punching’ example (3) to 'Interspersed
Masters' is illustrated by (3a). This assumes that 'X' brush 6 is set at column 80, and that
the 'Master' cards are punched with an *X* in column 80.

NOTE: The plug connecting 'Punch' brush 80 to 'X CH' is for checking that the 'X'
in column 80 was read by the 'X' brush. A failure to read by the 'X' brush would cause the
machine to stop and the red error light to glow. The error condition would have to be
cleared by pulling the handle at the side of the 'Comparing Indicator', plugboard removed
(to avoid erroneous punching), the cards run out, and the 'X' brush setting and plugging checked.
Interspersed Master Gang Punching. Checking.

By using the 'Reading' feed of the machine, this type of 'Gang Punching' may be
automatically dieeked.

The machine has a further set of 5 'X* brushes, located immediately in front of the
'Reading' brushes. The plugging required for checking the previous example is illustrated
in Section (4) of the plugboard diagram. It is assumed that 'Reading X* brush 5 is set on column
80.

To use the machine for this purpose the 'Gang Punch Compare' switch must be ON.
It is permissable to operate the machine simultaneously in the two different modes, i.e.

Gang Punching from the Punch Feed and Comparing from the Reading Peed.
In the event of a comparing error, the same action should be taken as for a Reproducing

error, described in 'Plugging For Reproducing', except that two 'One Shots' should be given
and the error cards will be the two top cards in the 'Reading Stacker'.
Punch Emitter.

Consists of twelve hubs each of which emit their indicated digit, once in each card feed
cycle. They are usually connected to the 'Punch Magnets' and are used as an alternative to,
or in addition to Gang Punching and Reproducing.

Section (3) on the plugboard diagram illustrates the emission of the number 1127 into
card columns 7-10.

The three sets of four huhs, each set connected by a line and located immediately below
the 'Emitter' (Hollerith Reproducer only) are known as 'Bus Hubs' or Common Hubs. Their
function is to provide three sources from a single source plugged into them e.g. the digit
'1' in the previous example.
Column Splits.

Are a group of hubs located to the right of the 'Digit Emitter'. Let it be sufficient
to aay that if a reading source is connected to the 'Common' of one of these hubs, the digits
0-9 from that source will be available at the 'Punch 0-9' hub and the zones X and Y available
at the 'Punch X and Y' hub.
13.6 TABULATORS.

As tabulators are usually constructed to a customers' specification, very few are
identical. It is therefore proposed to discuss these very generally.

DPCS2

-13.13-

Basically the tabulator is a printing machine, capable of reading decimal or alphabetic
punching from any of the 80 columns of a card and directing this information to a set of print
bars or print wheels, to produce one line of printed data. Print bars/wheels may vary in number
between 50 and 120.

The machine is programmed by means of plugwires inserted into a control panel, making it
possible for any of the 80 card columns to be connected to any of the print bars/wheels, and a
variety of other flexible functions.

Speed of printing varies according to machine, from 80 to 250 cards per minute.
Fields from the card may be accumulated in adding units of the machine, and totals printed

out at determinable points, usually when a punched field common to one set of data changes i.e·
Date, Part No. Clock No. etc., or by a single punching unique to a particular type of card.

Printing out of totals may be accong>lished at varying levels of precedence, according to
the significance of change in data. e.g. One level of total may be printed out on a change
of day, a sum of the days to date on a change in month, and a sum of the months to date on a
change in year.

The range in counting units, which may be grouped to form counters of the desired size
vary between 20 and 120 and they are available for adding or subtracting decimal or sterling
data.

Information may be added into counters direct from the card without simultaneous printing
and only totals from groups of cards printed out. Usually this can be accomplished at a higher
card feeding rate.

Discriminatory facilities are available to permit, amohg other things, re-allocation of
type bars/wheels for a particular type of card e.g. Positive numbers printed on one set of
type bars/wheels and negative numbers on another set by discriminating on the sign of the
number. Likewise information may be allocated to different counting units.

A marker digit is a hole punched in any position in any column of the card and made
unique to ary particular function required of the tabulator e.g. a Y punched in column 80
could mean 2 or 3 extra spaces before printing this card. An X punched in the same or another
column, 2 or 3 extra spaces after printing this card. A 9 similarly could cause the tabulator
to feed to a new sheet of paper before or after printing this card. All of these markers
punched in one card would call all the nominated functions.

If all 80 columns of the card contain data, marker digits may be allocated in the X and Y
rows of the card, provided that the columns chosen will never contain alphabetic data.

Attachments are available for fitting to machines to enable them to produce up to four
carbon copies of results. It is also possible to use tabulators to p reduce stencils and
duplimats.

It is always advisable before introducing a punch routine into a programme, to discuss
the desired print layout etc. with the tabulating supervisor.
13.7 ENG-LISH ELECTBIC CARD OPERATED TYPEWRITER.

This equipment consists of an electric -typewriter mounted on a control console, and a
card reading device.

The card reading device will read punched cards at a rate of 10 card columns per second,
and operate all the standard functions of the typewriter.

Control over the printed layout is maintained by a set of instructions puwrfrH in a
single programme card mounted in the card reader.

DPCS2

Control is also available from instructions punched into the input cards, or a combination
of programme card and input card instructions. This provides extreme flexibility in the
layout of data.
13.8 AUTOMATIC PUNCHES/VSRIFIERS.

Several types of machine are available, designed for punching and verifying large
quantities of decimal or alphabetic data.

Card feeding and stacking is automatic.
Two types of keyboard are available; 'Numeric' which is similar in layout to the hand

punch, and 'Numer/Alpha' which is similar in layout to the standard typewriter keyboard,
(depression of one Alpha key causes the equivalent two hole Alphabetic code to be punched).
Keys are of the 'touch' type.

Card layout, skipping, gang punching etc. is controlled either by a single 'programme
card' or 'plugboard'.

Additionally one particular machine will print the digits or characters punched, along
the top edge of the card.
13.9 COLLATORS.

These machines are controlled by 'plugboard programme' and are ectremely versatile.
All the uses to which they may be put are too numerous to include here. It is hoped however
that the following list will be of some assistance:-

(a) Merge together two packs of cards of like sequence.
(b) Select unmatched cards from either of two groups, and simultaneously

merging matched cards if required.
(c) Select into one pocket, cards of a particular denomination, rejecting the

remainder.
(a) Sequence check packs of cards.
Speeds vary according to model and make between 200 and 650 c.p.m. from each of the

two card feeding units.
13.10 INTERPRETERS.

Cards may have punched data 'interpreted' or printed on the actual card itself.
Several models of Interpreter are available, all controlled by simple plugboard

programme. Some will interpret all 80 columns of a card;others only 60 columns on one run.
Certain models can accommodate up to 1 9 row3 of print on one card. Speeds vary between
8 and 100 c.p.m. according to model and make.
13.11 MARK SENSING REPRODUCER.

From a horizontal, or near horizontal pencil mark, three card columns in width, the
Mark Sensing Reproducer can produce a punched hole in a card. Up to 27 such pencil marks may
be made on each side of a card. (Two runs through the machine would be required if each side
of a card were marked).

Mark Sensed columns may be plugged to cause punching in any desired card column.
Specially printed cards and very soft lead pencils (e.g. 23) must be used.
Standard reproducing and gang punching facilities are fitted to these machines and at

all times their speed of operation is 100 c.p.m. from each feed.

DPCS2

-13.15-

13.14 DATA TRANSCEIVERS.
These machines transmit or receive punched card data over telegraph or telephone lines,

or by radio.
Operating speeds are up to 11 c.p.m.

13.15 CARD TO TAPE. TAPE TO CARD.
Machines are available to translate paper tape into punched cards and vice versa.

DPCS2

14

DPCS2

14.1 INTRODUCTION.
Lecture 6 defined the DEUCE instruction word as

^ + SP5 + DP1q + W 15 + TO>1? + TP26 + GP32

and stated that W takes values 0 - 3 1 using digits P^y to Pg^ · T does not start until Pgg
leaving a gap of Pg2 to Pg^ unaccounted for.

These digits are known as the JOE digits, historically because a JOE is a useful stooge·
These four digits provide a useful link between the WAIT number and the TIMING number and
if present can be used in conjunction with instruction modification of the W number to
alter the TIMING number after a predetermined number of modifications. This process, known
as SPILLING out of an instruction is now described.
14.2 EXIT PROK AN INSTRUCTION El SPILLING UP.

The process is best illustrated by an example. Suppose we wish to punch the successive
minor cycles of D.L.10 on 32 rows of 3 cards and exit from an instruction modification
loop without using a separate counter. The instructions are:

10 - 2 4 Gall punch·
1 - 1 3 I is A,10-29 1 (15) T Xr ... S

1 3 - 0
Q29 (10 - 29X)

W ̂ 0 ■ / ' N ^ ^ p i l l W = 0

A^_1 28 -^25 AT 9 - 24 Clear Punch.

By arranging for the modified instruction to be obeyed Q29 and the initial wait number
to be 1, the first minor cycle punched is 10^. Since the NIS is A and the timing number T,
Q29 leads to an instruction in D.L. A sue. (T-1). This instruction increases the wait
number by one, causing the next m»c. of D.L.10 to be punched on the next trip around the
loop. Eventually, after 31 additions to the instruction W becomes 32 (S 0.̂ The carry
to P22 is transmitted through P22 to Pg^ and increases the timing number to T + 1. On the
32nd time Qg^ causes 10^ to be punched and the instruction now leads to Â , which takes
us out of the loop·

There is the basic idea. Add to the wait number until a carry passes through digits
Pgg to P23 to increase the timing number by one. Like all simple ideas it has lots of
possibilities; we can add two to the wait number to operate on double transfers and spill
after 16 operations; we can Pgg digits and obey an instruction or series of instructions
with unchanged wait numbers, spilling after any number up to 16 by suitably choosing the
initial value of Pgg to Pg^. We can subtract P ^ from a Wait number, leaving - P25
blank and eventually subtract one from the timing number. All these are the same in
principle and their efficient use in programming is a coding exercise.

•

In the example given above the instruction 10-29 is obeyed once unmodified and
28 - 25 is obeyed after the instruction is obeyed. This is defined as POST-ADDITION.
Another routine to do the same operation adds P^y to the instruction before it is obeyed the
first time ·

This is defined as PRE-ADDITION, the instructions are

AUTOitATIC CODING- BY JOE DIGITS.

10 - 2 4
I - 13 A 10 - 29 0 (15) TX

V i 2 8 '1 25 Add P17
1 3 - 0

Q29 (10 - 29X)
/ \ Spill W = 0

V £ o / \
------ / \ 9-. 24

Note that the instruction has W = 0 in the coding but is obeyed the first time with W a 1
Ί4.3 RULES FOR CODING SPILL ROUTINES.

It will be apparent that spill occurs when W = 32 and the instruction is acting as
an automatic full count detector. We require to know 3 facts before coding a spill routine·

(a) How many operations* are required before spill occurs·
(b) The minor cycle of first operation transfer*
(c) Whether POST ADDITION or PRE-ADDITION is to be used. In the case of 13 - 0

or 21 g or 21, - 0 this is within the programmer's choice but not in the case of 17 or
1 8 - 0 with A.I.M.
* By "operation" we mean obeying the quasi instruction.

If POST ADDITION is used the number of additions made is one less than the number of
operations· If PRE-ADDITION is used the number of additions is equal to the number of
operations·

To code the routine we must choose Wq the initial wait number and q the quasi minor
cycle·
Rules.

1· Choose Wq such that
Wq + (No. of additions) = 32

2· Choose q so that
o + WQ + 2 = first operation minor cycle·

Example 1«
To read successive rows of a card into D.L. 9 starting at 9^. POST-AUDITION.

No. of operations 12.
No. of additions 11·
Unit quantity added (P̂ _,)
Therefore W + 11 = 32.
Therefore WQ = 21

First minor cycle of operation = 18·
Therefore q + 2 1 + 2 = 1 8 .
or q = 27*

The instructions are
12 - 2 4 Call reader.
I - 13 I is A, 0-9 21 (15) T X
ΪΤ - 0

Q27 (0 - 9X)
'̂''''̂ v̂ Spill·

V 3 28 " 25 V 2 9 - 2 4

- 14 . 02-

DFCS2

Example 2.
To punch successive minor cycles of D.L. 9 from 910 to 9 ^ on successive rows of a

card.Post-addition is used.
No. of operations 8.
No. of additions 7·
Unit quantity (P^) added.

Therefore Wq + 7 = 32 Wq = 25
F i r s t minor cycle o f operation = 10.
Therefore q == 10 - 25 - 2 = 15· [Adding 32 to g ive p o s it iv e re su lt^

The instructions are:
10 - 21). Call punch.
1 - 1 3 I is A, 9-29 25 (15) T X

Ϊ Γ - 0

Q15 (9 - 29X)
/ — Spill.

V 15 28f' 25 W 9 “ * ·

Example 3.
To add corresponding minor cyclee of D.L.9 and D.L. 10 from m.c. 0 to m.o. 30, placing

the results in 12q to 12^Q.
Two fetch and one store are needed. Only one of these need be of the counting spill

type and the store instruction is chosen.
Assume Pre-addition is used and 21 g and 21^ are available for instruction modification.

No. of operations 31
No. of additions 31
Unit quantity (P^y) added.

Therefore WQ + 31 * 32 or WQ = 1.
q + 2 + 1 * 0 = 3 2 therefore q = 29·

The instructions are:
I, J - 2 1 I is 9 - 1 3

J is 10 - 25
K = 14 K is A 15 - 12 1 (15) T

T Q - 0
(9 - 13) Fetch from D.L.9·
21j - 0

Q29 (10 - 25) Fetch and add D.L.10.
28 - 22 (d) Modify I and J.
13 - 15 Store result TS15*
1 4 - 1 3 "
2 8 - 2 5 STORE result in D. L. 12 and modify store
1 3 - 0 instruction.

Qpq (15 - 12) ,
Spill.

V i 13 “14 A T EXIT.

DFCS2

Bxample 4.
To fetch m.c. 0 to 15 of D.L. 9, multiply each by m.c. 0 to 15 of D.L. 10 and store

double length results in D.L.12. All numbers considered positive. Post addition is used
To store double length results P^g mil be added to the store instruction each time. The
quantity added is thus 2P^.

No. of operations 16
No. of additions 15
Addition unit 2P.jy

Therefore V/q + 15 x 2 = 32
Therefore Wq = 2
First operation minor cycle is m.c. 0·
Therefore q + 2 + 2 = 32

q = 28.
The instructions are

I, J - 192 j I is 9 - 16
* J is 10 - 15

k - 14 K is A, 21 - 12 (d) 2 (15) T
^ P - 1 3
1 3 - Ο

Q~. (9 - 16) Fetch from D.L. 9
16 - 21^ Multiplier to 21^
30 - 212 Clear 21 g
28 - 25 Modify D.L. 9 fetch
13 - 19,, instruction.
193 - 13

(10 - 16) Fetch from D.L. 10.
0 - 24 Multiply.
28 “ 25 M odify D.L. 10 fetch
13 - 19^ instruction.
14 - 13
1 J - 0

Qgg (21 - 12 (d)) Store result.
Spill

Arp_2 28 - 25 (d) \
_________ 13_r 14 Αϊ_1 EXIT.

The above sequence of instructions is adequate but may be improved by modifying the source
number of the fetch instruction.

-V+.Ou-

DPCS2

1 - 1 5 I is 9 - 16
K - 14 K is A 21-12 (d) 2 (15) T
15^- 13
1 3 - 0

Q30 (9 - 16) Fetch fromD.L.9
28 - 2? Modify D.L.9 fetch
13-15
16 - 213
30 - 212

Pj. + (—P^y) - 25 Change source to D.L.10 and remove P^y
1 3 - 0

Q30 (IO - 16) Fetch from D.L.10
0 - 2 4
14 - 13
1 3 - 0

Q28 (21 - 12 (d)) Store in D.L.12.

V 2 28 " 25<d) V i
13 - 14__________ 1

It may be apparent that the addition of P18 to an instruction permits two correct choices
of coding· Spill can occur vixen the wait number is either 32 or 33* This permits two
alternative values of initial wait number and two quasi-instructions. On this basis

No. of operations = 16
No. of additions = 15
Quantity added 2P^y

Therefore ¥q + 15 x 2 = 33
or WQ = 3*
First operation m.c. = 0
Therefore q + 3 + 2 = 32
Therefore q * 27·
The reader should check that an initial wait number of 3 and a quasi minor cycle of 27
will effect the appropriate spill after 16 operations.
14,4 EXIT FROM AN INSTRUCTION BY SPILLING DOWN.

This process is used for backward fetch and store routines. P^y is subtracted from
an instruction until the carry through Pgg to subtracts one from the TIMING· number.
Again post or pre-subtraction may be used and criterion for spilling is ¥ = - 1 ·

Example.
To read 32 successive rows from cards to D.L.10 m.c. 31 to 0. Post subtraction.

No. of operations 32.
No. of subtractions 31.
Unit quantity subtracted.

Therefore ¥q - 31 x 1 =-1
or ¥ q = 30

First operation m.c. = 31
Therefore q + 2 + 30 = 31
or q = 3 1.

DPCS2

The instructions are
1 2 - 24
1 - 1 3 I is A, 0-10 30 T (1) X■ ■ ■ -s

1 3 - 0
Q31 (0 - 1QX)

J Spill.
^ 1 28 : 26

If T > 0 it will be safe to subtract one from T. If T = 0 the subtractive cany will pass
through to and change a GO instruction to a step and vice versa. P31 = 1 is used as
a guard digit to avoid this unpleasant feature of subtractive instruction modification.

- 1 4 *0 6 -

DPCS2

15]
·*.*ί

-15.01-
LECTURE 15

AUTOMATIC INSTRUCTION MODIFICATION (AIM).
15.1 BASIC PRINCIPLES,

Modification of instruction words is a device of frequent occurrence in programming a
digital computer and any simplification of the process is likely to lead to considerable saving
of time and storage space and to vitally affect the economy of the programme.

The 'Destination 0' facility of DEUCE assists the modification of instructions in the
accumulators. The disadvantage of this method is that the accumulator used is not available
for the calculation in progress at the time of modification. Furthermore a modifying
instruction is necessary and in many cases a modifying word also.

The most common modification is singly the addition of one to the Wait Number of an
instruction enabling that instruction to operate on successive minor cycles of a long delay
line. Frequently two is added to the Wait Number in order that successive pairs or
alternative minor cycles may be dealt with. Sometimes subtraction is more appropriate as
when data is stored 'Backwards'. Next most common are modifications of the Source and
Destination numbers by unity for continuous storage of larger quantities of data. Other parts
of the instruction word are modified comparatively rarely.

Exit from a modification sequence is often achieved by the spilling of the counted up
Wait Number into the Timing number via the intermediate 'Joe digits'. Greater flexibility
is obtained by provision of a facility whereby the 'Joe' number is increased by one at the
same time as the remainder of the instruction is modified.

Most programme 'loops' require some form of count to ensure the correct number of cycles
of the loop. This usually requires the use of an accumulator but a method of automatic
counting is made available by the new facility.
15.2 OPERATION.

During the first, and only the first minor cycle of transfer of a Destination 0
instruction of the form 17 - 0 or 18 - 0, the word stored in the appropriate minor cycle of
the quadruple store is automatically modified according to the rules given below. Different
modifications are available on QS17 and QS18 and also according to the , Pg, Pj, P^, and P ^
digits of the Destination 0 instruction. Modification does not occur in subsequent minor
cycles of transfer.

Operation of 'Destination 0' is unchanged in that the normal next instruction is replaced
by a word from the quadruple store only if transfer is still taking place when the timing
number has counted down. Hence, if it is required that the word modified by the transfer
enters control as the next instruction, it is necessary that the last minor cycle of transfer
should either be the first, or differ from it by an exact multiple of four minor cycles.

It is important to note that it will be the modified word that is obeyed, not the
original word planted in the quadruple store, and furthermore that a copy of the modified word
will be left in the quadruple store after the modification has taken place, ready for
subsequent modification if required.

DPCS2

-15.02-

The type of modification effected depends on the coding of the D.O. instruction, according
to the following scheme.

DIGITS PRESENT IN D.O. INSTRUCTION. DIGITS ADDED TO WORD IN QS.

15.3 RULES FOR SPECIFYING- MODIFICATION.

NO P,,, NO P2 (= 0 x Ρή) P5
P1’ NO P2 (= 1 x P.,) P10
NO P1f P2 (= 2 x P ^ P17
P1* P2 (= 3 x P.,) P18

If a is present, then the presence of a will cause an additional P22 to be added
and the presence of a will cause the digits determined by P^, Pg, and P^ to be subtracted
instead of added.

If a P ^ is not present, the and P^ have no effeot. (This case is normally used for
automatic counting. The use of the P2 here clearly imposes a slight restriction on the choice
of Next Instruction Source).

The above coding holds for 1 7 - 0 instructions.
For 18 - 0 instructions, a similar scheme holds but subtractions replace additions and

vice versa.
N.B. Suppression of 'carry' occurs only when two digits are added simultaneously. Thus
there will be no carry to the Pgg position if a P22 is being called.
15Λ AUTOMATIC COUNTING.

By obeying an instruction of the form 1 7 - 0 c r l 8 - 0 during a loop and coding it in
such a manner that the 'Destination 0' facility does not take effect (see 15*2) an automatio
count can be set up and exit from the loop achieved by discriminating' on sign or nullity in
the appropriate minor cycle of QS17 or QS18, the original word placed there having been
suitably chosen according to the number of times the loop is to be cycled.

It ehould be noted that counting may be positive or negative (in general counting up
will take place in QS17 and oounting down in QS18) and in terms of P5* P10* P17 ΟΓ P18» but
that the specification of the counting field will impose a restriction on the Next Instruction
Source of the D.O. Instruction which, of course, acquires its normal significance in this
application. This restriction is unimportant in practice except in the oase of reproduction
of subroutines into alternative delay lines, an aspect which will concern only the DEUCE library
organisers.

DPCS2

-15.03-

15.5 EXAMPLE.
To calculate values of a function and store them in successive minor cycles of the drum,

exiting from the loop after a given number of repititions.

i

323 0-31 l
32tj 22y-l8 (4mc) load modifier

Anticipate head shift first time
2gy = counter x
22q = 3, 31-29 1, 0, 0.
229 = 3 , 16- 10, 0(15)0 .

230 * 3’ Ο*31»1» °» °·
10.

Is count finished?

Calculate next value - store in TS16.
Count, (instruction is 6P^, 18-0, 0, k) NOT

obeyed.
(10P 18-0 1, 0, 0)

1 »Store in next available me. of DL10.

Copy DL10 into DL11,
(12P1(18-0 1, 0, 0)
Write on next availsble track.

Reset DL storage instruction.
(12Ρ1? 18-0 1, 1, 1)
Shift to next head position.

-31 1.
Failure alarm - drum full.
Reset DL· storage and write instructions.

DPCS2

16

LECTURE 16
PROGRAMME TESTING.

16.1 INTRODUCTION.
These notes set out a procedure for programme testing that will be adequate for

beginners· Although programme testing is a skill which can be developed to a high degree of
sophistication, it is possible to get satisfactory results with an eleuentaxy knowledge
of the method of attack and correct use of the tools of the trade·

It is a popular fallacy that a programme tester needs to be a wizard at the DEUCE
Control Panel? in fact it is more valuable for you to learn to plan your programme
testing run before going on the computer, and to learn to analyse the information the
computer gives you after leaving the computer· In this way you will be able to do
most of your thinking away from the computer, calmly and at your natural speed·

A bibliography of more advanced reading is given at the end of these notes·
16.2 METHOD OF ATTACK.

You have just read that there are three stages in a programme testing session,
which are:

(a) Before going on the DEUCE.
(b) While on the DEUCE.
(c) After leaving the DEUCE·

These stages will now be described separately.
(a) Before Going on the DEUCE.
You should eliminate, by systematic checking, as many mistakes as possible before

going on the DEUCE. You should have a dear idea of what the DHJGE should do when it is
executing your programme. Knowing this, you can decide what things you will look for and
in what order· You should prepare test data* These are the general aims· To make it
easier for you, we have prepared the following questionnaire which you can check through
each time before you go on the computer, until you know the routine.

λ

DFCS2

-16,02"
QUESTIONNAIRE

Question. Method.
1. Have you checked

your coding?
Take the coding sheets and calculate, from the Wait
and Timing numbers, the transfer minor cycle and next
instruction minor cycle and write these on the coding
sheet a3 subscripts to the N1S, S and D. Also calculate
the length of transfer if this applies, and write this
in the 'go* column. Ask someone to call out the
instructions, in flow diagram order, while you check them
against the flow diagram.

2. Have you checked
your subroutines?

Preferably ask someone else to check that you have put
the link and data in the correct stores before entry, that
the link is coded from the correct quaei minor cycle, that
everything under the headings 'Parameters' and 'Uses'
in the subroutine write up have been correctly incorporated.

3, Have you checked your
punched programme?

Ask someone to call back your binary programme cards while
you check them on your coding sheets. Check triad headings,
lead-in instruction, decimal card numbering (in cols. 13-16) ̂
which should tally with your coding sheet card numbers.
Reproduce all cards which have holes filled in. Finally,
check that the cards have not got out of order, and that
the necessary standard cards are on the front of the pack·

4, Have you made a list
of the failure

These should give the pattern (MIS, S, D) that will
appear on the I.S. lamps on failure·

indications in your
programme?

Do not forget those in the subroutines you use· Write
against each what it means·

5. Have you prepared
test data?

In. the early stages, you should use a small quantity of
data (if the quantity is variable), making the numbers
arithmetically convenient so that you can easily check both
final results said intermediate numbers. Do not overlook that
some of these numbers must be checked against the DEUCE's r
binary results (e.g. 0.3 is less favourable than 0.25!)·
Later you should prepare test data (maybe several runs
with different data will be necessary) to stretch the
programme in all permissible directions. (You will find it
invaluable if you write out at the beginning the exact
format of all the data and a specification of the programme
giving the maximum and minimum values the data may take
and the limits on the quantity of data). Make sure that
every string of instructions gets tested at some time or
another, including the failure indications. See whether
you can make use of aiy data to hand with worked-out results
obtained by old fashioned hand methods.

6. Have you put stoppers
in convenient places
in the flow diagram,
that will help you to
check the continuity of
your programme?

Convenient places are the first instruction after the
Reader has been cleared (not on the 9-24 instruction itself,
however), the first instruction after leaving a loop, the
first instruction after new instructions have been fetched,
the last instruction of all·

DPCS2

7 . Have you marked a l l the
p laces you want to 'Bequest
Stop·?

Convenient p laces are on the in struction that te ste fo r
leaving a loop (so that you oan examine the counter the
f i r s t two or three times round the loop to make sure i t
i s being altered correotly) or a t a point where you want
to make sure that data i s being fetched or stored
correctly the f i r s t two or three tim es. Avoid, request
stop on 17 -0 or 18-0 or on in struction s with destination
24 as the DEUCE w ill not function correotly in these
circum stances.

6 . Have you marked the
plaoes where you want
to Post Mortem?

S trateg ic places are where you have numbers that need
checking and that w ill otherwise be lo s t (normally
you w ill hot take more than one Post Mortem, and that
ju st before you leave the computer. This i s because a fte r
a Post Mortem i t i s usually necessary to re sta rt from
the beginning).

9 . Are you sure how to use the
programmed and engineered
f a c i l i t ie s you plan to
use?

Make sure that you understand the w ritten instructions fo r
using these (the more usual ones, are described in the
section 'Tools o f the Trade' and that you oan Identify
on the DEUCE console a l l the keys, lamps e to . that
are referred to .

10. Have you made a plan o f
the things you expect
DEUCE to do and that you
have to do, in the order
in which you expect them
to happen?

This w ill help you to recognise when anything goes wrong»
and to be sure you take away from the oonputer a l l the
punched information you intended to . This i s p articu larly
important since you w ill probably fin d that ccnputer
operation i s not conductive to lu cid thought! In th is
context you may find the presentation o f information
on the P.T.A.T.O. sheet (back page of these notes) worth
copying. P.T.A.T.O. , in ciden tally , stands fa r Programme
Testing Assigned to Operators, and i s a scheme fo r giving
stage (b) o f a programme testin g session to another
person who i s proficien t a t operating the DEUCE but who
knows nothins about the urosramme beinv tested that i s
other than what i s w ritten on the P.T.A.T.O. sheet.

DFCS2

.(b) While or. the D5UCE.
Take with you:
(1) Plan of campaign*
(2) Programme cards, test data*
(3) Coding sheets, flow diagrams and list of failure indications.
(4) Instructions for using the computer and cards of the Post Mortem programme*
Yihen you arrive at the computer, put the kqys, lamps, etc. on the Control Panel,

Punch and Reader in the following standard state.
Control Panel Keys.

All keys level except Stop Key.
Step key raised (on NORMAL)·

Control Panel Lamps.
32 O.S. lamps off.
32 I.D. lamps off.
Red lamp above step key off.
Lamp above Read key off.
Lamp above Punch key off* 4
No red lamps on the upper right hand comer of the control panel (a red light here
should be reported to the engineer)·

Lamps on Reader*
All lamps off.

Lamps on Punch.
Ready lamp on*
All other lamps off.

Switches on Punch.
Counters re-set to zero.
Parameter switches OPP or set to required pattern*

Cards in Punch. f

Cards removed from hopper.
Punch run out and cards removed from stacker.
Hopper refilled (salmon stripe data cards for results, mauve stripe programme cards
for Programme Display and Post Mortem).
Punch run in.
During the run, follow your plan of campaign carefully. Write down anything peculiar that

happens (e.g. an unexpected pattern on the I.S. lamps, Read still called when you thought
you had cleared it) as you may find your memory plays tricks*

Before you leave the computer, press the run out key on the Punch, collect your
•cards from the Reader stacker and the Punch stacker, sign the log book and then move away
as quickly and completely as possible.

(c) After Leaving the DEUCE.
The Use of Incorrect An s.rers.»

Do not throw these away, as they may give you information of two kinds. First examine
the general layout and the number of cards. These may make you suspicious about seme
particular part of the programme such as a counting operation if you get the wrong number of
results, or missing or extra stoppers if there is a systematic displacement of the rows.

c

DFCS2

-16.05-ι
Second, even if they are wrong the actual numbers may be useful to pinpoint an error,
particularly if numbers which should be different are the same or that should be the same
are different.
The U3e of PROGRAMhiE DISPLAY Results.

Programme display cards can be checked against the flow diagram. Usually, it is
adequate to check just the S and D (incidentally to do more is quite hard work) if you
are trying to find out whether the continuity is alright or if the programme meanders off in
an unintentional direction.

There ere some snags. If you reach a patch of instructions you do not recognise ,
they might be from a subroutine and therefore not on your coding sheet. A large pack of
cards can look formidable but can be examined rapidly, if there is some repetition as the
programme goes round a loop several times, by looking for the discrimination instruction
or for an instruction that is obeyed repeatedly with modified Wait number. Remember that
the NIS of one instruction specifies the D.L. in which its successor is stored.
The Use of POST MORTEM Results.

Post Mortem might have been used with a specific purpose in mind, e.g. to check
whether certain data were stored in the correct place, or that certain intermediate numbers
were correct. When something unexpected has been found further use can be made of them.

In trying to explain some peculiarity or if you are not even sure where the Post
Mortem was taken it may be worth looking at the following things:

(1) Counters.
(2) Modified instructions.
(3) Stores to which instructions are sent during the programme, especially

1,.., 1,. etc. if subroutines are used.30 31
(4) Stores to which numbers are sent consecutively during the programme e.g. a

D.L, which holds successive tracks of the drum, or a IS which holds successive
words of a D.L.

Having found a Mistake.
After finding a mistake as the result of evidence collected from the computer, you

should find out just what the mistake accounts for. It may happen that the evidence you
have can be used to reveal more than the one mistake. Also, if your mistake was due to a
misunderstanding of how the computer works, look ahead to see if you have made the same
mistake later on . (An obvious example is not clearing 21 g before starting multiplication).
- 16·3 TOOLS OP THE TRADE.
The Reader.

Place cards in the Reader hopper, face inwards and with the Y-row edge leading. Put
in as many as you can comfortably hold in your hand. Read in the first handful of cards
with the Initial Input key. When the Reader hopper is empty and card position lamps 1-5
are off, remove cards from the stacker and refill the hopper. Read in these cards with
the Run In Key.
The Punch.

If the punch contains the wrong colour cards, remove cards from the hopper and press
the Ruin Out key. Place blank cards in the Punch hopper, face downwards and with the Y-row
edge leading, and press the Run In key. When the Punch hopper is empty, remove cards
from the stacker, refill the hopper and press the Run In key.
To Continue when a Stopped Instruction has been Reached.

Press down the Single Shot key and release it.

DPCS2

-16'.C6-
To Start Programme Display.

(1) Put the stop key at AUG. STOP.
(2) Pill the punch hopper with Programme Display cards (i.e. instruction cards with

a mauve edge).
(3) Press down Programme Display key to 'ON' and release it.

To Stop Programme Display.
RAISE the programme DISPLAY KEY to 'OFF'. The Punch may stop for any of the following

reasons:
(1) No more cards. The card feed is empty and the punch is not READY. To continue

remove cards from the stacker, refill the feed hopper and RUN-IN.
(2) The programme on display comes to a stopper. The Punch CALLED lamp goes off,

the red light above the RELEASE Key comes ON. To continue press the RELEASE key and let go,
(the red light should go off) and then press the PROGRAMME DISPLAY key again.

(3) The programme on display comes to 9-24 and puts the punch off. The Punch
called light goes off but the red STOP light is not on. To continue, RAISE the Programme
Display key to OFF, and then depress it to ON.
Request Stop.

To Request Stop on NIS, S, D (where one, two or all of NIS, S and D may be specified).
(1) Stop key to STOP.
(2) Set the given NIS, S and/or D on the I.S. keys (level = 0, down = 1).
(3) Press down one, two or all Request Stop switches to indicate NIS specified,

and/or D specified.
(4) Raise the External Tree Key.
(5) Stop key to normal.
(6) The computer will Request Stop on the next instruction it reaches of the specified

form.
(7) Stop key to STOP.

Post Mortem.
(1) Put Stop key to STOP.
(2) Se t 0 30-0 (1) on I.S. keys and check key. (for I.S. keys level = 0, down = 1.

Por check key, raised = 0, level = 1, down = 2).
(3) Depress External Tree key.
(4) Single Shot.
(5) Put External Tree key level.
(6) Put Stop key to NORMAL.
(7) Call Read manually (i.e. press down the Read key on the Control Panel).
(8) Run in Post Mortem (ZP29/2).

Cards are then punched (between reading various bits of programme) which give the contents
of the computer stores at the time of Post Morteming. Por fuller details see the programme
report.
Lining up the Monitor Display.

The R.H.S. monitor display tube shows the 32 m.c.'s, in order, of a D.L. selected by
the rotary switch. The display is said to be lined up when m.c. 0 of the programme is
at the top of the screen. (N.B. the position of m.c. 0 on the screen is no way affects
the operation of the conputer).
To line up:

(1) If the contents of some minor cycle or group of minor cycles can easily be
recognisedon the display tube, use rotary switch to bring the D.L. containing this pattern
DPCS2

•16.07-
onto the R.H.S. tube, identifying the pattern and press m.c. SLIP button until the pattern
is in the correct position.

(2) While programme is being stored on the drum, some people find it possible to
line up in D.L.11. Use the rotary switch to bring D.L.11 on the R.H.S. display tube, and
press the m.c. SUP button until the longest interval between filling consecutive rows
occurs between the bottom and the top ror/.
16.4 BIBLIOGRAPHY.

(1) "Preparing and testing DEUCE programmes” by P.J. Landin. (Report No. NS y 80)*
(2) "DEUCE Control Panel Manual" by Miss A. Birchmore. (Report No. NS y 79)·
(3) "Standard Operating Instructions far DEUCE" by Miss A. Birchmore·

(Report No. NS y 78) ·
(4) "Post Mortem" Programme Report No. ZP29/1 and 2.

DPCS2

SS
Od
H

Programmer Programme No, ,/,
G.I.P.? i/p

P.T.A.T.O.
Estimated
Tine.

Actual
Time.

Number of
Output Cards,

Step No» Action Operator. V/hat should happen. ' V/hat does happen
/ Next step.

X

■90
*91

·“

17

LECTURE 17

DEUCE CONTROL PANEL.
17.1 imCDUCTIOl·!.

At first sight, the DEUCE control panel appears as a bewildering set of lights,
switches and keys, and is quite sufficient to persuade most people that it is impossible for them
ever to get to understand it, let alone use it in a competent manner*

It should be understood, however, right from the start, that many good programmers with
years of experience have never fully understood the functions of a lot of the keys on
the panel.- because it is possible to test programmes without this knowledge* The panel
is designed to assist all types of computer personnel - programmers, operators and engineers -
and therefore these are parts which are of special interest to one person but need not exist
as far as others are concerned*

For the purposes of this lecture, the panel will be dealt with in three distinct
sections:-

(a) Those parts essential to computer operation, which all should know*
(b) Those facilities designed to help the programmer to test his programmes,

which it is advisable to know*
(c) Those extra facilities which are used occasionally, but are by no means

essential to efficient programme testing*
The card reader and card panel each have a few controls on them, and these will be

included in this lecture*
Not all DEUCE control panels are identical - here we will consider the latest and

most complicated panel, and point out the differences as we go along*
17.2 ESSENTIAL FARTS.

Before any programme can be fed into the computer, certain points must be checked.
They are:-

(a) Switches.
All the keys and switches on the panel should be in the UP position (i.e. the

metal handled switches) or the CENTRE position (i.e. the 3-position plastic handled keys)
except for the seventh key from the left in the top row. This key (usually called the
Stop Key) is marked NORMAL, STOP, AUG. STOP, from top to bottom, and controls the speed
of the computer. NORMAL is for full speed and STOP for testing, at which point every
instruction becomes a STOPPER. This key should be UP at the NORMAL position before starting
to read a programme. This is the ideal state, although several switches need not in fact
be UP. However, for beginners it is better to do too much than to miss an essential point ·

(b) Lights*
There should be no RED or ORANGE lights showing on the panel, except in the Magnetic

Tape panel on the top right. These may be ignored (unless of course the programme requires
tape)·

The red lights that may be on are:
(i) Above the STOP key. Nothing can be done by the computer whilst this lamp

is alight. It can be cleared by pressing the RELEASE key to the left of the STOP key.
(ii) Several immediately to the right of the dial at the top of the panel. If any

of these are on, report to the maintenance engineer.
(iii) One above the ALARM key in the second row from the top. This is cleared by

depressing the key belo.v the light. This is the only lamp cleared by depressing a key; in
all other cases the key is raised.

DPCS2

The oi.vjn.re lights that may be on are:-
(i) Above the Iv.OjR/ij.H'iE DISPLAY KEY in the top row (fifth from left)· This is

cleared by raising the programme display key,
(ii) Above the FUNCH key on the second row. This also 13 cleared by raising the

corresponding key.
(iii) Above the HEAD key on the second row. This can be cleared by raising the corresponding

key, but, since the first operation on starting a new programme is to read the instruction,S
this is usually omitted as unnecessary.

There are also two sets of 32 white lights near the bottom of the main panel.
These can be extinguished by pressing the keys immediately to the right of each row.

(c) Punch.
A supply of blank cards should be in position in the feed hopper (face down, Y row leading)

and the RUN IN PUNCH key on the punch housing should be pressed. This makes the punch
ready for U3e.

An automatic card numbering device is fitted to the punch, and the numbers should be
set to ZERO by pressing the key beside the numbering unit. There are also 8 manual
switches to punch identifying numbers on the cards. These should be set to the required
number.

The computer is new in a position to accept a new programme. The complete pack of
cards should be placed in the feed of the reader with the Y row of the first card nearest
to the reading station. The INITIAL INPUT key is now pressed, causing three separate
operations: -

(a) The mercury store is cleared of all instructions left by the previous programme.
(b) The cards are RUN IN to the reader (this brings the Y row of the leading card

into position just before the reading station).
(c) When the key is released the READ trigger is called, to start the computer

reading instructions from the cards and obeying them.
(d) End of Programme.
When the programme reaches its conclusion, all lights on the panel will remain in a

steady state, and both reader and punch will be stopped assuming, of course, that the
programme is fully tested . The RUN OUT key on the PUNCH should now be pressed and released,
and the punch will turn over for two (or three for some machines) card cycles to ensure that
all punched results are in the PUNCH STACKER. They are then removed, and the completely
blank cards on the fiont of the pack are discarded - the card numbering will show which
' is the first result card.

The programme is removed from the READ stacker and the READ hopper should be
checked to ensure that all cards have in fact been read. If not, the RUN OUT READ key
should be pressed, causing any unread cards to pass into the stacker, from which they can be
extracted.

(e) General Warning.
The centre portion of the cards is rather critical when feeding into punched card machinery,

and cards should NEVER be held by an elastic band around the centre. Two bands should be
used, one at each end, and the tension should not cause the cards to buckle. As far as
possible, cards should be kept in trays and the spring dip pushed up tight to prevent
distortion.

NO CARD HAVING ANY PUNCHING Y/HATSVER should be left in the vicinity of the
computer.

DPC32

17.3 AIDS TO PRCXa/JJMB TESTING.
(a) Instruction Staticlaer (i.S.)
Half way down the panel, and on the left hand side, there is a row of switches, with

a lamp above each switch. These are divided into groups :-
(i) - not always fitted.
(ii) ^2-4 “ the N.I.S. section of an instruction.
(iii) ” the source section of an instruction.
(iv) P-jo-14 “ the destination section of an instruction.
(v) P̂ ̂ g - the characteristic section. One switch is often used for characteristic,

and the lamp is not always fitted.
The I.S. lamps always show the instruction that is at present in CONTROL waiting to

be obeyed. Consequently, if the STOP key is set at STOP, making each instruction into a
stopper, the I.S. lamps will show N.I.S., S and D of the next instruction to be obeyed.
This should agree with the flow diagram. If the conrouter is told to obey this instruction
by giving a "single shot" (see 17.3 (b) below) the instruction on the I.S* lamps is obeyed and
the next instruction takes its place. Hence, the flow of instructions can be checked against
the flow diagram, and any errors of coding or punching detected.

(b) The Single Shot Key.
This is located immediately on the right hand side of the STOP key. Every time the key

is depressed, a "single-shot" is emitted, causing the machine to obey the instruction at
present in control.

If the key is raised, a succession of single shots is given, allowing the programme to
be obeyed at a very much reduced rate, and enabling the operator to check visually on
certain aspects of the programme (i.e. are successive results being stored in successive
minor cycles of a long D.L. as they are calculated).

On some machines, a second and duplicate single shot key is fitted near the bottom right
hand side of the main panel.

(o) Programme Display.
It is probably already apparent that to test a programme by looking at each instruction

independently on the I.S. lamps is very wasteful in computer time, end subject to error.
■n A built-in facility of DEUCE is the ability to punch out complete instruction in the order

in which they are obeyed, and as they are obeyed. They are punched in exactly the same
form as they are obeyed, and therefore modifications can be checked vising programme display.

The rules for Programme Display are:-
(i) Put the STOP key to its bottom position - marked AUG. STOP.
(ii) Put Programme Display cards into the punch and run them in. Programme Display

cards are ruled as instruction cards, to make interpretation easy.
(iii) Press the key marked PROGRAMME DISPLAY, the fifth from the left on the top

row.
(iv) Note that Programme Display should not be started on an 80-column DEUCE if

an 80-column read or punch instruction has been obeyed, but the operation is not yet
completed, as incorrect operation will occur under these circumstances.

(v) If a stopped instruction enters control during programme display, the punch
will stop and programme display is cleared. Indication of what has occurred is provided
by the BED lamp over the STOP key, which will go on under these circumstances. Before
anything more can be done, the RELEASE key to the left of tbs STOP key should be pressed
to cancel the red light. Note that the stepped instruction will be left on the I.S.
lights, as it is still in r: siting a tragic shou.

DPCS2

*" * t <*'·
(vi) If a 9-24 instruction is obeyed during Programme Display, the pun<~" ill be

cleared and therefore will stop. The Programme Display key should be raised and then
pressed again to restart. Indication of this fault is that the orange lamp above the
programme display key remains ON, but the lamp above the PUNCH key goes OUT. It should
be noted that the instruction following the 9-24 instruction is punched out before the
punch stops, due to the organisation of the circuitry.

(vii) Programme Display may be stopped at any time by raising the Programme Display
key. This is required if the programme is in a loop having no exit (as often happens during
testing). Always have an idea of how many cards will be required (12 instructions per card)
to Programme Display any section of programme.

(d) Request Stop.

A facility exists to enable a prog'.‘ammer to stop his programme as soon as it reaches
a specific instruction, but without requiring any alterations to his programme cards.
This is called Request Stop, and the only action required from the operator is that he
shall define the instruction at which he wishes to stop.

The first step in iBing Request Stop is to decide which parts of the instruction word
shall be used to define the instruction. The possibilities are:-

(i) The P^ digit (on certain machines only).
(ii) The N.I.S. group.
(iii) The source group.
(iv) The Destination group.
(v) The Characteristic (on certain machines only).

Switches are provided on a Request Stop panel, located on the left hand side of the
panel (or to the right of the I.S. keys on some older machines) to select one or more
of the above groups in any combination. Only those sections selected by these switches will
be considered for Request Stop purposes.

The second step is to set on the I.S. keys the value of each group selected, putting
the key down for a ONE and UP for a zero in the binary form. When the instruction is reached,
the switch below each I.S. lamp that is ON will be D O W for the groups selected at stage one

The conditions are now set up to stop at the required point, but a third step is
required before the Request Stop is operative. These first two steps can be performed
before initial input of the programme, as all the keys concerned so far come within the
provision at the end of section 17.2 (a), but step 3 must wait until after initial input.

The Request Stop becomes operative as soon as the V.Tiite key immediately to the right
of the I.S. keys is RAISED. DO NOT PUSH IT DOWN . Now, every instruction entering
control is compared with the setting of the switches, and if each and every one of the
selected groups agree, the instruction is retained in control unobeyed (it should be
remembered that certain instructions will be obeyed over and over again if a Request Stop
is called on them. These are the trigger (D24) and the AIM instructions 17-0 and 18-0.
Some machines are modified to remove this effect, but it is recommended that beginners
do not use these instructions for request stop. Note that if the source only is selected
to stop on any instruction having source 1 ,it is possible to stop on 1-24 and upset
the calculation. For this reason, it is always advisable to select as many groups as
possible to reduce or eliminate this possibility).

Once the computer has stopped on a Request Stop, it will not proceed until the
interlock is removed by switching off the Request Stop. Before this is done, the machine
should be set to STOP, otherwise the programme will continue at top speed and the effort
will be wasted. With the machine on STOP, the white key is reset to its centre position
and the computer moves to the next instruction and stops there. The next step may now

DPCS2

be decided a t le i s u r e .

To sum up Request S to p , the s te p s a re : -

(i) S e le c t requ ired groups·
(i i) Se t value o f each o f the requ ired groups.
(i i i) R aise the white key.
(iv) Wait fo r the computer to s to p .
(v) Put the machine on STOP.
(v i) R eset the white key to i t s ce n tra l p o s it io n .

(e) Post Morten.

A programme c a lle d POST MORTEM (ZP29) has been designed to punch out a s much a s

p o s s ib le o f the contents o f the machine.

To s t a r t t h i s programme, i t i s necessary to g e t the in stru c tio n O-CK in to c o n tro l,

w ith no disturbance to the r e s t o f the s to r e .

To do t h i s , we use another f a c i l i t y b u i l t in to the Control P an e l, c a lle d the
"E xtern al T re e ". This u se s the same I . S . sw itches th a t are used f o r Request S to p , but
in a d iffe re n t way. The white key lo ca ted .to the r ig h t o f the I . S . keys (which i s r a ise d
to make Request Stop o p erativ e) has a th ird p o s it io n (down) to connect the E xternal T ree .
With t h i s key down, the computer w il l ignore the N .I .S . Source, D estin atio n and C h a ra c te r is t ic

) se c t io n s o f the in stru c tio n in C on tro l, and obey the in stru c tio n s e t up on the I . S . sw itches.

T herefore, to s t a r t POST MORTEM, by sending the in stru c tio n 0-0 X in to c o n tro l, we

have to use the E xternal Tree f a c i l i t y . Source 30 provides a su ita b le in stru c tio n to go

in to c o n tro l, and th erefore we need to s e t a s the in stru c tio n 30-0 (l) on the I . S . keys
(Note th a t the c h a r a c te r is t ic i s lo n g . S in ce i t i s qu ite probable th a t the in stru c tio n
in con tro l has unequal w ait and tim ing numbers, the long c h a ra c te r is t ic i s th erefore
e s se n t ia l to ensure th a t the tr a n s fe r to D estin ation 0 does in f a c t take p la c e) .

Having se t the I . S . keys to 30-0 (l) and put the E xtern al Tree on by depressing
the white key, a s in g le shot w il l send the requ ired in stru c tio n in to co n tro l. I t i s
now necessary to p re ss the READ key to c a l l the read er , before the POST MORTEM programme
can be obeyed, and a lso to p re ss the RUN IN key to move the f i r s t bard in to the reading

p o s it io n .

 ̂ 17 .A ADDITIONAL FACILITIES.

There are se v e ra l u se fu l keys on the Control Panel to a s s i s t in te s t in g a programme,

e sp e c ia lly when e rro rs have been d etected . Among them are : -

(a) The Monitor Tubes.

These are two cathode ray tubes on the lower r ig h t hand p an e l, which given a v isu a l
d isp la y o f the contents o f the high speed s to r e . The l e f t hand one shows, from top to bottom :-

TS13
TS14
TS15
TS16

DS19
DS20
DS21

QS17
QS18

· I —

DPCS2

-17*06-
The right hand tube shows the 32 minor circles of any one of the long delay lines ,

or the contents of the Control register, or the contents of the auxilliary buffer store
for magnetic tape (if fitted). A multi-position rotary switch below the tube controls
which section of the store is displayed·

The construction of the machine is such that the minor cycle called m.c· 0 by one
programme is not of necessity that called m.c. 0 by the previous programme In fact»
any even m.c. may be selected · A button between the twotubes is provided to move
the conplete display down two minor cycles, so that, whatever minor cycle is called 0, it can
be moved to the top.

The monitor tubes should not be used to check each individual instruction - a look
to see if the correct restilt is obtained at a few stragecally placed points is all that
can be done without wasting large amounts of computer time*

(b) The Discrimination Key.
It is often the case that, in programme testing, the condition arises in which

the conputer goes round and round a loop and never comes out, due to some error in the
calculation.

Since the usual way out of a loop is by means of a discrimination instruction, it is
normally possible to get out of a loop if the discrimination can be forced· The <*
discrimination key (the fourth from the left on the top row) allows the programmer to
do Just this. With the key in its normal central position, the conputer decides which
path to take at all discriminations. If the key is raised, the conputer is overuled, and
all discriminations will be forced to take the early path (i.e. the zero or positive path)
whatever the condition of the pertinent store. If the key is pressed down, the delayed
path is taken·

(c) The T.I.L. key.
Immediately to the left of the Discrimination key is the TIL key. This operates

in a similar manner to the discrim, key (i.e. with the key at central, the conputer
makes up its own minds with the key UP, T.I.L. is always considered OFF, with the key DOWN,

(a) The Cent. T.T. Key. T'I*L* is c o h e r e d ON.
The second key from the left on the top row, the Cont. T.T. key, is of occasional

use. If an instruction is set on the external tree (as described in 17.3 («)) it can
either be obeyed using a single shot, causing the instruction in control to be over-ridden
or it can be obeyed using CONT. T.T. by pressing the CONT. T.T. key.

There are certain limitations to the use of CONT. T.T. Firstly, the transfer
continues for as long as the key is pressed, so* it is impossible to transfer one word
from a multi-word tank, but any instruction that is not definitely tied to a particular
minor cycle may be obeyed by this method· The second restriction is that no transfer
to destination 24 will operate by this means - a single shot is essential for all triggers.

A -typical use for cont. T.T· is to fetch a track down from the magnetic drum into the
high speed store for inspection. To fetch track 13/7 into D.L.10 the sequence is:-

Set I.S. keys to 13-31 (s)
Put External Tree ON·
Press and release the cont. T.T. key i.e. ohey 13-31 (s) ·
Set l.S. keys to 7-30 (s).
Press and release the cont. T.T. key i.e. obey 7-30 (S) .
Set I.S. keys to 11-10 (the characteristic here is immaterial since cont. T.T.
operates for as long as the key is depressed)·
Press and release cont. T.T. key i.e. obey 11-10 continuously ·
Put External Tree off.

DPCS2

SUB. The instruction in control (and displayed on the I.S. lamps) will not be changed
by these operations, unless the instruction had a double characteristic, in which
case the 'double' will be forgotten when the instruction 13 finally obeyed.
(e) The I.D. Keys.
Near the bottom of the panel there is a row of 32 lamps with a key below each. This

is the I.D. (input dynamiciser) and source 0 refers to this as long as the reader is not
called. If a switch is depressed, the corresponding lamp is lit; if the switch is raised,
the lamp is extinguished. The lamps that are lit indicate the ones in the word obtained
from source 0.

It is not recommended that the I.D. keys should be used to affect the course of a
programme, except when one wants the programme to punch out additional information. The
reason for this is that no operator can be certain that the right value was set on the
I.D. at the correct time, yjhich may cast doubt upon the validity of results.

A typical use is for the case of a programme going round a loop until some condition
is satisfied. Should the results fail to converge, the loop will persist indefinitely, so a
test of the I.D. could be incorporated such that when the loop appears, a digit is put
on the I.D. which could cause the machine to punch out sufficient information to show what
is causing the trouble.

j (f) The O.P.S. Lights.
Normally, destination 29 refers to the punch. If the punch is not called, however,

anything sent to destination29 will appear on the O.P.S. lights, which are located
immediately above the I.D. lights.

Typical uses of the O.P.S. are to display a marker in long programmes to show how
far the calculation has progressed, or to shew up an error should some check on the
calculation.fail.
17.5 CONCLUSION.

This lecture does not claim to deal with each and every facility on the Control
Panel, but it is hoped that it gives sufficient guidance for the average programmer to
attain a standard of competence with the keys to satisfy his personal wishes. Remember,
that nothing that a programmer does on the keys can do worse than spoil the programme - it is
impossible to upset the computer permanently.

The more advanced uses of the panel all result as a combination of one or more of the
techniques described, together with suitable instructions for the computer to obey - the
hardest part is to decide what instructions are required to fit the case: the actual
operation is then a routine operation. Even when controlled manually from the panel, the
computer is still obeying standard form instructions and following the normal rules. Therefore
the problem of using the keys is a logical extension of normal DEUCE programming following
the same rules - all that is required is a plan of action together with care in
execution (with a bit of practice to gain confidence).

DPCS2

18.

SPECIfil· HtOGRAMMIHG TECHNIQUES.
18.1 INTRODUCTION.

The aim of this lecture is to show a number of programming devices which while not
being necessarily essential tools for the programmer will help him to make more efficient
programmes*
18.2 SCALING FACTORS.

Most read routines for a 64 column DEUCE treat all numbers read as integers, and
most punch routines require the numbers which are to he punched to be numerically less
than 10. Since it may not be practicable in a particular problem to operate on all numbers
in integral form or as numbers less than 10 some method of scaling will be required to
convert the input data into the form required for the main programme and to convert this
working data into a form suitable for output. Although there are a number of routines
which carry out this scaling the programmer may find them somewhat cumbersome to use and may
prefer to do the scaling himself.

Supposing we wish to read into the machine the number 7.6359. The DEUCE will read
this as 76359. If we merely divided this number by 10^ the result would be invalid since
the result of dividing a by b in the machine is ̂ . 231.

However, since we will have already decided on the number of binary places (p) we
require in the number (and this will be such that the number is single length) we can divide
the input data by 1(A x 2^ ”*^ and we can be sure that the answer is valid· Thus, in this
example, if we wished to store 7.6359 with 28 b.p. we would divide 7635^1>y 10^ x
so that the resulting operation would be 76359 ♦ (W + x 2?) = “ 7*6359 x 22̂
■ 76359 to 28 b.p. 10 *2"

Supposing now that we have the number 763.59 stored in the machine to 15 b.p. and
wish to punch it out as a decimal number. We would select a punch subroutine for the
problem we are dealing with (e.g. punch 4 numbers per card) and in nearly all cases we would
find that the number must be sealed to be numerically less than 10 and to have not more
than 31 and not less than 16 b.p. Following a similar argument els before we would see that
we must divide 763.59 by 10 so that it is numerically less than 10 but this is clearly not
sufficient since we must end up with a number which has a number of binary places lying

^ between 16 and 31»
Supposing we wish to scale numbers so that they have 25 b.p. then the calculation

would be
763.59 (15 b.p.) ♦ 102 x 2q = 7.6359 (25 b.p.)

and q would be
31 + 15 - 25 = 21 far

763.59 (15 b.p.) ♦ 102 x 221 = 76?»£9-* ̂ x. -2-- = 7.6359 x 225
10* x 2

= 7.6359 to 25 b.p.
To sum up we can say that when reading we determine the scaling factor by asking the questions J-

(a) How many d.p. are there in the data?
(b) How many b.p. do we want?

When punching, the scaling factor is determined by asking the questions -
(a) What is the mavlimim size of number to be punched?
(b) How many d.p. in the number and how many b.p. are required in the scaled

result.

-18.01-

DPCS2

-18402-

18.3 SAVING INSTRUCTIONS.
There are many dodges fo r saving in structions which programmers have devised, many

of which have appeared in DEUCE News. The following i s a selection of the most frequently
used ones which should help programmers to w rite more e ffic ien t programmes.

(a) Instruction M odification.

I t i s often advantageous to modify instructions in the long accumulator* For example
i f we wished to tran sfer successive n u c .'s o f D.L.9 into 14 and a fte r some confutation has
been performed tran sfer the contents o f 12(. back into successive m.c. o f D.L.10 a programme of
in struction s might read

6._ - 21_ _ A This has the advantage1 (,1° 3,^
21g “ 0 that in instruction A 6 ^ , 6 ^
Qjq (9 - 14) which contain the instructions

. 1 4 - 1 0 and 9 - 1 4 are transferred «
• to 21, - using only one instruction

2 1 - 0 ^3 and in B the two in struction s are
m odified, again using only one i

28 - 22 (2 m.c.) B
(b) Modifying Instructions by Adding Complex Patterns.
Sometimes in structions can be saved by modifying an instruction a number of times

with rather conflex pattern s. This i s b est illu stra te d by an example and a usefu l one
00curs in Subroutine F04 which punches 4 decimal numbers, the binary data having been
stored in 17q_j · This section o f the subroutine puts punchings on the Y row fo r positive
numbers and on the X row fo r negative numbers:

2q 30 - 15 (C lear 15)
2g 27 - 14 (Put P1 in 14) . .
3g 21lt- 212 (214 contains 3 17 - 27 0 4)
2j>8 212" ̂ Ί
Q_0 (170“ 27) (I s 17± - ve?) i = 0 in it ia lly .

34 26 - 15 3 5 30“- 13
313 316“ 222 <P10 - V (A lters instructions
220 21g- 0 to 17 - 26)
β ,ο O70- 26)

h 5>a~ 2Z2 p̂7 ,e ,9, 1 1 , 1 2 ,14- 25'
228 212” 0 instruction in 212

. Q30 (13 - 170) to 13 - 17q)

h 31θ" 222 ^7,11,13,26,28-32^
instruction in 212
to 170 - 27)

2^ 2 4 - 1 4 (8 m .c.) (Move sign d ig it 8
| p lace s).

321 14 -v28^(H as la s t sign been formed?)

2„c 15 _ 29X (punch 28 - 22- (increase i by 1)
25 si*.,) < - i ------------------------- 1

By means o f the patterns in 3-jg» g and 3^q the instruction 17q - 27 i s changed into
17q * 26, 13 - 17q and back to 17^ - 27 again so that the correct nuc· i s used in every
case · The arithm etic which has been performed a t each stage o f m odification i s o f in terest
and i s shown below·

NIS S D Ch W J T P31 j 2
214 3 17 27 4 2
31fi 31 3 31 15 1 ■ _____

Sum 3 17 26 6 2
318 ___________ 28___ 22 3 31 15 ____________

Sum 3 13 17 7 2
3? ________ 4 10 __ 29______ 3___

Sum = 214 3 17 27 4 2

(o) Instructions before Subroutines and D estination 0 Instructions·

I t should be d e a r already that i f a D estination 0 instruction with a certain quasi
minor cycle i s used in a programme i t may be used time and time again·

Thus we can have

J «14 «16
U - 0

«30 < '« - »o>
«30 212 - 1ν

and la te r on in the programme

*12 515 " 15
1 28 1 3 - 0

«30 <10o - 14>
415 417 “ 16

But a lso i t i s d e a r that we can use any group of in structions ending in a destination 0
instruction many tim es· Thus we might have

611+ 616 ” ^ S 2 ^15 “ 15
12g 28 - 25 126 28 - 25
128 1 3 - 0 1 * 1 3 - 0
Q30 0 6 - 90) Qj q (100 - 1 4)

/ . 610 212 “ Λ1* 415 417 " 16
Advantage can be taken of sim ilar ideas when entering subroutines* For example i t often
occurs in a programme that we wish to m ultiply a by b and at a la te r stage a by o using
a subroutine· This could be w ritten ,

«8 12,0- 1 4 (.) 36 12 , 0- 14 (.)
4q 122 - 16 0>) «Λ 3 , 1¾ - 1« (o)
42 8 - 13 (link) 4g 5Jf - 13 (link)

610 "1 610
MUIff | MULT

But we can save an instruction here by w riting

4q 122 - 16 31 123 - 16
42 84 - 13 45 5., “ 13

*8 1210- 14 *8 121(f 14
610 j ~ 1 610

} MULT j MOLT

-18lO>

DPCS2

(c) DEUCE News Omnibus.

The f i r s t section o f the DEUCE News Omnibus (issued 13.3.59) contains «fetails of
programming devices which have appeared in previous DEUCE News.

18.4 MARKER WORDS AND MULTI-WAY DISCRIMINATIONS.

A beginner may think that a t any point o f a programme i t i s only possib le to take one
of two courses of action by using the discrim ination destinations 27 and 28. However, in
many problems i t may be necessary to take a number o f d ifferen t courses of action according
to some criterio n . This can be done in a number o f ways one o f which i s by using what are
called marker words.

For example, i f we are doing a programme which contains a major loop but requires small
variation s in in structions fo r d ifferen t c r ite r ia the following condition might a r ise .

Set criterion (A,B or C)

Part 1 o f loop.

I s criterion A, B or C.

Special Section Special Section Special Section
fo r A. fo r B. fo r C,

Part 2 o f loop.

_______ 1
I s criterion A, B or C.

_zzz:
Special Section I Special Section

fo r A. I fo r B or C

_________ Z Z I
Part 3 o f loop.

I— J ___________________

This could be performed by putting into 19g say ,

Zero fo r criterion A.
P._ for criterion B.17
P j2 fo r criterion 0.

19g i s then called a marker word and the programme would readt

-18.04-

Γ---------- --------------------!

Set marker word in 19g

L l
r * ..

Part 1 o f loop.

1.........
192 - 28

192 - 27

_ z z z
Special Section I [S p ec ia l Section Special Section

fo r A. I I fo r B. fo r C.

y -------, l

| Part 2 o f loop.

192 - 28

X . - - Z , ______
Special Section Special Section

fo r A. fo r B & C.

__ -zz:
Part 3 of loop.

An altern ative method i s to modify an instruction which may he a waste instruction *

Por example i f we wished to go to one o f 7 d ifferen t instructions according to one
of 7 d ifferen t c r ite r ia we could do th is hy making sane store (192) say equal to 1, 2 . . . 7 ? 26
for each o f these c r ite r ia and use 192 ho modify an instruction obeyed v ia destination 0 ,
thus:

*•14 “ 13 Ο 1-1 0 0)
1¾ - 25 (η P25)
1 3 - 0

12 13 V 15 6 ^ 7

18.5 USE OP TIL- I.D . AND O.S.

From an operational point o f view the id eal programme i s one which reads cards in
and punches out answers and does not require any other operation·

Sometimes, however, i t i s d iffic u lt to achieve th is id eal sta te and i t i s necessary
fo r the operator to exercise some Judgement and in terfere with the programme. (Programme

-18.05»

DPCS2

uL01 is a good example of this)·
Either I.D. or T.I.L. are very useful for altering the course of a programme which

may consist of a major loop.
If we wish a programme to take one of two courses of action different from the normal

route whenever the operator wishes this could be done by setting or P32 on the I.D*
and at some portion of the loop of instructions the programme would read

0-,28
Z ' \ n Z

0 - 27
'’‘"-Ή...,

Main Prog,
Exit A (P17) Exit B (P g)

A path different from the normal route could be obtained by using TIL thus,
Main Prog.

2 - 2 4

7 x \
EXIT A Main Prog.

If the operator wishes to know how a certain store in the programme is varying this can
be done by sending the contents of this store to the O.S. In programme LL01 for example
the successive iterates to a latent root are displayed on the O.S. If the operator wishes
to speed up the convergence of the process he presses one of the I.D. keys whereas if he
wishes to obey the next section of programme he depresses the TIL key.

- 1 S .C 6 -

DPCS2

19

-19.01-
LECTUEE 19.

THE ORGANISATION OF LARGE IROGRAMHES CN DEUCE.
19.1 P1TB0IUCTICIH.

There are many advantages in writing a large programme in sections in which each section
occupies the whole or part of the high speed store and some form of assembly programme is used
to join the sections together.

The advantages of such a scheme are
(a) The construction of the programme is much more closely related to the logical

flow diagram. In some cases one block of the logical flow diagram equals one block of the
programme.

(b) It is much easier to test a programme since it may be possible to test each section
independently so that when they are joined together it is simpler to find where a fault has
occurred.

(0) Most assembly programmes contain a number of programme testing facilities so that
it is possible to restart a progranrae if something has gone wrong without reading the programme
in again, or else, for example, the order in which sections are obeyed may be changed by the
programmer while the programme is still in the machine.

(d) In a logically complicated programme it may be virtually impossible to find ones
way around the programme when something goes wrong at a later stage of programme testing unless
it has been written in sections.

The disadvantage of such a scheme, however, is that no use is made of the facility on
DEUCE for anticipating magnetic shifts so that the minimum amount of time is spent transferring
programme from the drum to the high speed store. In many commercial programmes and in some
scientific ones (e.g. Monte Carlo calculations) where a logically complicated programme has
also to be extremely fast the system of breaking the programme into sections will not be
suitable, although it may be desirable to write the programme in this manner initially and
then to modify it to gain speed.
19.2 EXISTING- ASSEMBLE PROGRAMMES.

The following programmes are the principal assembly programmes written far DEUCE.
(1) The General Interpretive Programme ZCOI (latest version 2C01T/5.)
(2) ZC 13.
(3) ZC 14.

All these programmes have a number of common features, which impose certain conditions
on 1die caistruction of sections (or bricks) of the main programme.

Each section can use any of the stores of the machine except 1 , track 15/15 and
the tracks containing programme sections or the control programme. Also each section ends by
placing a parameter stating what happens next and leads out with the instructions

1 2 - 1 (32 m.c.)
130

and leaves the contents of the Q.S. s (and of certain other short stores depending on the
control programme used) and D.L.s except DL 11 to be found by the next section.

Another condition to be satisfied by sections is that each section is transferred to
consecutive D.L.s including DL 1 before it is obeyed and it is stored on successive tracks in
the drum, (the lowest DL number in the lowest track number).

DB3S2

The General Interpretive Programme which can be used quite generally has mainly been
used for Linear algebra problems and a full discussion of this programme will be given in
Lecture 23. The instructions which join sections together are written in a specially coded
form and are known as G.I.P. Code words. G.I.P. contains many facilities for counting,
discriminations and programme testing. At the end of a brick the G.I.P. is obeyed, which,
itself, obeys the next code word. This may indicate that one of the G.I.P. facilities
mentioned is to be obeyed or that the next section of programme is to be brought down into
the high speed store and obeyed.

Che of the drawbacks of G.I.P. is that the time taken to obey a code word is about
1 second. If each section deals with fairly lengthy calculation of a few minutes (such as the
multiplication of large matrices) then the time to obey code words is not particularly
important. ΥΛιβη, however, the operating times of the sections are small the time to obey a
codeword becomes important. For this reason programme ZC 14 was written for which the time to
obey a codeword is only χ sec.. This gain in speed is obtained at the expense of some
programming on the part of the user, to join the secticns together. As already mentioned the
instructions for joining secticns together in G.I.P. are in the form of code words which are
very simple to write. In ZC 14 these instructions are contained in a master progranme to be
written by the user. The master programme plants all the necessary parameters for a section
(e.g. in the case of matrix multiplication the track numbers of the matrices to be multiplied
and the product matrix), and plants a cue and a link. The cue indicates whereabouts on the
drum the section is to be found and the link indicates where the next instruction in the
master programme is to be found after the completion of the section.

G.I.P. and ZC 14 will be found most generally useful Then the programme is chiefly made
up of standard bricks which are already in the subroutine library.

ZC 13 (Programme Store and Fetch) is an organised version of subroutine B08 which is
described below. It has the advantage that for very large programmes which cannot be stored
on the drum all at once, it can read in programme from cards to the drum as and when required.
19.3 ASSEMBLY SUBROUTINES.

If a programmer is preparing a large programme built up of sections which are not library
bricks he will probably find it simpler to join them together with an assembly subroutine. B08
which is used in ZC 13 was,until recently, the most useful routine to use. Sections joined
together by BOS must obey the rules mentioned in paragraph 2 and in addition must start in 1^0
and end with the instructions

I - 1 6
1 2 - 1(32 m.c.)
130

where I is of the form TP1 + DPI 7, T being the track No. of the highest track of the next
section to be obeyed and D being the highest DL number.

B08 is stored on track 15/15» is obeyed in DL 1 and only vises the T.S. In order to
enter a section at different points is is advisable for each exit of section to end with the
following instructions

I · - 192
1 - 1 6
12 - 1(32 nuc.)
130I is as above and 1' is a link instruction obeyed Quasi 0 in the next section. Then if each

section commeices in 1^ with the instruction 0,192 ~ ®) 0 ,0, entry to the seotion will be
determined by the link planted by the previous section.

DPCS2

B08 has numerous useful programme testing facilities. A P ^ 011 ensure
that the machine stops before each section is obeyed. If a particular oode word is set up
on the I.D. the machine will stop when the corresponding section is reached· When the
machine stops on a code word it is possible by manipulation of the TIL key to lead to any
section desired.

These features are also included in the assembly programmes already mentioned.
In addition it is quite easy to modify B08 so that if a P ^ is set on the I»D. the

machine punches out code words instead of stopping at them· This is extremely useful in
testing a very logically complicated programme since it produces a programme display of the
logics of the programme.

The main disadvantage of B08 is that it is slow in operation· If for example the last
magnetic read instruction in a section is from track 13/10 say then in order to bring down
B08 into the high speed store the heads must be shifted to 13/13 and may be shifted again to
read the programme into the high speed stare.

In order to reduce this time another version of BO8/1 has been writtaa which is stored
in a D.L. instead of on 13/13 and has reduced programme testing facilities·

However, another routine B14 has now been written which while lacking the programme
testing facilities of B08 has many advantages in speed and compactness. As will be seen in
the next section, in most large programmes some form of magietic fetch and store routine will
be necessary to fetch blocks of data from the drum and to store results back an the drum.
Most of the magnetics fetch and store routines occupy half a D.L. and B14 has the advantage
that as well as carrying out all the fetoh programme facilities of B08 it contains a magnetic
fetch and store routine and the whole of this is stored in one D.L. of the high speed store·

To fetch or store a track from the drum the number of the track x is stored in
TS 14 and the routine is entered. To fetoh tracks T to (T - n+1) of programme into D.L. D
to (D - n+1‘) the code word TP^ + DP^q + (N + 16) P ^ is stored in TS 14 and the routine
entered.

If a P^y is included in the programme fetch codeword the routine can be used for filling
D.L· s 1A to 7A in the case of a DEUCE Marie HA.

In view of the importance of these two routines B08 and B14* the flow diagrams of each
of than are included at the end of these lecture notes·
19.4 MAGNETIC FETCH AND STORE ROUTINES.

An extremely useful description of magnetic fetch and store routines is contained in
DEUCE News 26 (pp. 20 - 26) and the following notes serve to underline the main points
mentioned in this DHJCE News and to make one or two minor additions· The process by which
blocks of numbers are brought from the drum to the high speed store uses a buffer D.L. (often
D.L· 10). First this D.L. is filled with the first track of numbers to be fetched and while
these are being transferred to the required stores the next track of numbers is transferred
from the drum to D.L. 11. A similar process is used for storing numbers on the dzum.

Subroutine B09 is somewhat different from the other B series of routines since it is
specifically designed for fetching or storing one, two or a set of numbers up to 32 in specified
m.c. s of the D.L. s or on the drum· In other words it is a means of using the drum as a
random access store· One point worth noticing here is that although it is possible to transfer
a pair of words in successive m.o. s if these are sue* 31 and 0 these will be taken from the
same track of the drum not from successive tracks·

If a programmer wishes to fetch and stare information in blocks of a track at a time
routine given in DEUCE News 22 is the best to use.

DECS2

-19.04-
19 .5 USEFUL AIES TO HflGRAHirSRS VIIBT WRITING LARGE Ĥ OGR/J.Q’.iES.

In a large programme it is essential to have a simple method cf reading progranroe from
cards to the drum which will also make it possible to restart the programme at any point in
the case of a data error or a machine failure. In order to do this numerous aids have been
devised for programmers. These may briefly be described as

(1) Clear drum.
(2) Set Clock Track.
(3) Synchronise with clock trade.
(4) Bead to drum.
(5) Enter programme.

The purpose of Clear Drum is to ensure that before the programme is read to the drum the whole
of the machine is cleared so that at any subsequent examination during the operation of the
programme no information found can be due to the previous programme.

If at some point a programme is restarted there is no guarantee that the nuc.s of a
track brought down from the drum correspond to those before the restart. In order to arrange
this a clock track is used which is a track on the drum containing a P31 in a certain nuc·
(the track can also be vised for storing programme). The purpose of a synchronise with clock
track programme is to arrange that after a restart this digit is still in the same nuc. as it
was before the restart.

Another use of the clock track is in programme testing when a POST MORTEM is required
(i.e. the output of the contents of D.L. s and non-zero tracks of the drum). The use of the
clock track here ensures that m.c. 0 of a track appears as m.c. 0 on a triad of post-mortem
cards.

Various programmes have been written to provide these facilities (c.fJMTCE News 16) but
an all-embracing programme which provides all these facilities, allows re-entry into the
programme at any point and can be used on a DEUCE Mk 1, Mk II or Mk IIA has now been written.
This routine, ZP 46T, will read triads punched either in the cL or β fields or both and
can read drum triads punched out by POST MQRTUI (ZP29T/2) back an to the drum.

DECS2

-19.05-

DPCS2
Ργο Γ̂ΟΤΛΓΛΛ. t̂ircK β °8

- 1 9 .0 6 -

FeTCH StoREI i

Bû .
DPCS2

20

DEUCE LIBRARY SERVICES

THE ENGLISH ELECTRIC COMPANY LIMITED,
DATA PROCESSING AND CONTROL SYSTEMS DIVISION,

KIDS GROVE STOKE-ON-TRENT, STAPES.

January, 1961,

DEUCE LIBRARY SERVICES

THE ENGLISH ELECTRIC COiIRANY LIMITED,
DATA PROCESSING AND CONTROL SYSTEMS DIVISION,

KIDS GROVE STOKE-ON-TRENT, STAPES.

January, 1961

CONTENTS

Page

1-0 GENET? AT.........

2.0 TESTATES (W "RTBTiTOATTONS........... 2

2.1 DEUCE Nftws.... 2

P. 2 DETTCE Si i>> τοη Ή n«s 3

P. ̂ DETTCF. Proem p>mmfiR

P.Ji "ΠΕΠΓΐΕ ΤτνΡοττηΛ+.ϊ on Or tHr 5

3.0

ί*0

5.0

PUNCHED C A R D S...... 6

NTEmEiRTNn. s y s t e m 6

COSTS OP THE DEUCE LIBRARY SERVICE.......... ... 7

APPENDIX.....

1.0 GENERAL

Since DEUCE wan first introduced a few years ago a large and
coraprehensive library of information on its use has been accumulated.
This information, the most comprehensive to be offered with any
computer, is supplied free with all DEUCES, and can be made available
to all DEUCE Users. The wealth of published material, on subroutines,
programmes and programming techniques can save countless hours to the
potential DEUCE User.

There are four main types of DEUCE programming literature.

(i) DEUCE Programme News
This publication appears at regular intervals and contains a
wide variety of informatioct of interest to DEUCE programmers.
In addition to the regular issues, there are irregular special
issues, each devoted to a study of one particular topic.

(ii) DEUCE Subroutines
The library subroutines (over 300 subroutines have been
published up to April, 1959) consists of a wide range of
programming sequences to perform all the frequently required
DEUCE Operations. The potential user can therefore expect to
be able to build a number of these subroutines into any
programme and so save himself much programming time and be sure
of using fully tented sequences of instructions.

(iii) DEUCE Programmes
The library of DEUCE programmes (nearly 500 have been published.,
up to April, 1959) contains ready made programmes to perform
all the. commonly required operations on the computer. In
addition to such normal DEUCE programmes, two special types may
be mentioned. Firstly Standard Bricks - self contained
programmes which can be easily and flexibly merged into
comprehensive programmes and secondly engineers Test Programmes

1,

normally issiied with every machine. The programme
library also includes various automatic programming schemes
and programmes designed to aid programmers.

(iv) DEUCE Information Cards
This recent innovation follows upon efforts of the DEUCE
Users Association to reduce redundancy in pro-ramming and
to circulate information on unpublished routines. They
contain brief specifications of routines in course o f

preparation, and of completed routines which are not of
sufficiently general interest to warrant full publication.

2.0 DETAILS OE PUBLICATIONS

Details of these four classes of publications are given
below.

2.1 DEUCE News
This publication is at present issued every two months, its
dates of publication being the end of every odd month (January,
March, May, etc.). It contains lists of new subroutines and
programmes , notes on programming devices and techniques and
any other items of interest to DEUCE programmers.
Contributions to DEUCE News, on any tgpic of interest tb*
DEUCE programmers are always welcomed, and should be sent
in by the 15th of the month of publication.

Apart from the regular issues of DEUCE News, special editions
are published from time to time, each devoted to one particular
topic. Among these special issues are the following -
DEUCE News No. 16 - Programmes to Aid Programmers.
DEUCE News No. 23 - Scheme B Trapezoids.
DEUCE News No. 31 - Colloquium on Automatic Programming.
DEUCE News No. 33 - Colloquium on Differential Equations.
DEUCE News No. 36 - Multiplier/Divider Techniques.
DEUCE News No. 44 - Colloquium on Curve Pitting,
DEUCE News No. 45 - Colloquium on Partial Differential Equations.

2

DEUCE News No. 51 - Colloquium on linear Algebra.
DEUCE News No. 52 - Colloquium on Monte CarloMethods.
DEUCE News No. 55 - library lists.
DEUCE News No. 58 - Colloquium on Business Anplications.

2.2 DEUCE Subroutines

The subroutines vary from the small and simple (which would
nevertheless save a beginner, for example, a fair amount of
effort) to the large and complicated using advanced
techniques and representing many hours of an experienced
programmers time. Whatever the complexity however, the
library subroutine offers an efficient and fully tested
method of carrying out part of a calculation. On occasions
the first published version is not the best t?iat can be
produced,. Some of the more important ones have therefore
been re-written a number o-r' times, incorporating the latest
programming techniques. This does not invalidate the
earlier versions, the later ones are simply more efficient,
i.e. use fewer instructions and/or are faster.

A large proportion of the 300 library subroutines are f«r
input of data and output of results, and subroutines now
exist for reading and punching almost any card layout the
programmer may choose. A full copy of a subroutine write
up consists of -

(i) One or more cards (si^e 6½11 x 8") which contain all the
information which the programmer needs to know to use
the subroutine.

(ii) A report (or. foolscap paper) on the subroutine,
including all the information in (i) above and
including also the full details of the flow-diagram
and coding.

3 .

2*3 DEUCE Programmes
A DEUCE programme differs from a subroutine in that it is
a self-contained, entity, the punched, cards for which can be
fed directly to DEUCE, Programmes may be divided into
the following categories,

1. Programmes for standard calculations. Among these
may be mentioned those for roots of algebraic or
differential equations, the simplex and transportation
problems, regression analysis, auto and cross
correlation, etc.

2. Standard Bricks. These axe DEUCE programmes which
fulfil a few special conditions which are used with
the General Interpretive Programme (G.I.P.). There
are over 200 bricks which in conjunction with the
General Interpretive Programme form a very flexible
and powerful method far solving a wide range of problems.
By suitably combining the bricks a special programme
can frequently be constructed in a very short time.

3. Programmes associated with the various' automatic
programming schemes. Apart from the General
Interpretive Programme, and a number of other allied
programmes, the Tabular Interpretive Programme and
Alphacode and their associated programmes come in this
category. These powerful programming schemes are the
most frequently used DEUCE programmes, *

4. "Programmers Aid" Programmes. In this category are
a wide range of programmes designed specifically to
assist programmers. Typical of such programmes are
those to load the magnetic drum with programmes, and
the 'post-mortem* routines which assist a programmer
during programme testing,

4.

5· Test Programmes. This comprehensive set of routines
(for the use of maintenance engineers) is designed to
test and measure margins of safety on the machine.
Such programmes are issued with every machine, but
are not usually of general interest.

6. The full publication of a programme consists of:

(a) A summary card (65” x 8”) giving the title and
brief description of the routine.

(b) The operating instructions (usually on cards
65" x 8”) which give all the information a machine
operator needs to know about the routine, i.e.
method of preparation of input data, order and
number of cards to be fed to DEUCE, the expected
output, and the failure instructions in the
routine and instructions for the action to be
taken if a failure is encountered.

(c) The full report, which includes summary and operating'
instructions together with any notes on the method
used, and a full flow diagram and coding where
practicable.

2.2+ DEUCE Information. Cards

In an effort to eliminate duplication in programming and
also to obtain and circulate more programming information,
the DEUCE Users Association recently set up a committee to
investigate the situation and suggest remedies. The
committee found that apart from duplication of effort,
a number of programmes were not being published because
their authors considered them not to be of sufficiently
general interest, though it may frequently happen that
one or two other programmers would be interested. The
outcome has been a liaison scheme which arranges for the
circulation of brief information about projected routines
and about completed routines which would not otherwise be
published.

5.

A brief specification is given for each programme or
siibroutine, together with the name- and organisation of
the author, in case further information is required. The
information cards 65·" x 8" in size, with details of one
routine on one card.
All programmers are asked to help themselves by co-operating
in the scheme.

3.0 PUNCHED CARDS

Punched cards for subroutines and programmes are normally
circulated to all DEUCE establishments so that any prospective
user should find the cards for his required routines in the
library with the machine to which he has access.

4.0 NUMBERING SYSTEM
All subroutines and programmes are referred to, by

programmers, by the code number. In the case of subroutines this
consists of a category letter and a number possibly followed by
a modifying letter or letters and possibly a stroke number.

e.g. (i) P13F/4. P stands for "punch" and the number 13
indicates that it is the thirteenth punch
subroutine. The modifying letter P means
that the subroutine deals with floating point
numbers and the /4 that it is the fourth
modification of the original F13F,

(ii) D01 D stands for "division" and the number 01
indicates that it is the first division
subroutine. There are no modifying letters
or stroke number, denoting that it works on
ordinary single length binary numbers and
that it is the original version.

6.

The code number for programmes is similar except that
there are two letters at the front, the main category and sub-
category respectively,

A complete list of subroutines and programme categories
can be seen in DEUCE News No, 35·

Pull details of the numbering system are given in DEUCE
News Nos. 26 and 35*

5,0 COSTS OP THE DEUCE LIBRAE! SERVICE

All library literature is available on request at prices
which cover the costs of printing and distributing the literature. _
Back copies of all literature may be ordered, issued-with
attractive plastic files in which reports may be stored. The
cards are issued loose. A number of copies of the literature
will be issued free with each DEUCE installed. For other
users, however, the literature can be supplied at an annual
subscription rate. The current rates are:-

No.of free Annual Cost of *
copies with subscription all back
a DEUCE. (guineas) numbers

____________________________ (guineas)
DEUCE News 4 5 15

DEUCE Subroutines 1+ 5 25
DEUCE Programmes (excluding 2 3 2©

Test Progs, and Bricks)
DEUCE Bricks 4 5 35
DEUCE Test Programmes 2 -
DEUCE Information Cards 4 3 -

* These costs are subject to some increase as the volume
of literature increases,

Ί" Subscription rates are not quoted as these are of interest
to DEUCE owners only, to whom they are supplied free,

7.

The code number for programmes is similar except that
there are two letters at the front, the main category and sub
category respectively.

A complete list of subroutines and programme categories
can be seen in DEUCE News No. 35·

Pull details of the numbering system are given in DEUCE
News Nos. 26 and 35*

5.0 COSTS OF THE DEUCE LIBRARY SERVICE

All library literature is available on request at prices
which cover the costs of printing and distributing the literature. ___
Back copies of all literature may be ordered, issued- with
attractive plastic files in which reports may be stored. The
cards are issued loose. A number of copies of the literature
will be issued free with each DEUCE installed. For other
users, however, the literature can be supplied at an annual
subscription rate. The current rates are:-

3ENo. of free Annual Cost of
copies with subscription all back
a DEUCE. (guineas) numbers

___________________ (guineas)
DEUCE News k 5 15
DEUCE Subroutines 1+ 5 25
DEUCE Programmes (excluding 2 3 2©

Test Progs, and Bricks)
DEUCE Bricks k 3 35
DEUCE Test Programmes 2 - -~|~
DEUCE Information Cards A 3 “

* These costs are subject to some increase as the volume
of literature increases,

*j~ Subscription rates are not quoted as these are of interest
to DEUCE owners only, to whom they a r e supplied free.

7.

It will also be possible, in certain circumstances, to

obtain separate copies of certain items of literature. This

facility is offered for those requiring selected copies of the

manuals on Alphacode , the Tabular Interpretive Programme, and

certain other documents, listed in the appendix.

All requests for any DEUCE literature shoudl be forwarded

to the undermentioned address for the attention of Mr. P.J. Marriott,

It should be mentioned that all the documents are copyright and

may not be reproduced in whole or in part.

DEUCE library Service,

The English Electric Company limited,

Kidsgrove,

S toke-on-Trne t ,

Staffs.

8.

APTENDIX.

The following documents can be purchased individually at
the places shown:

G. I.P. Manual (Scheme B etc.)............... 10/-
Alphacode Manual 10/-
Subroutine M a n u a l«. 10/-
Tabular Interpretive Programme (T.X.P) Manual ?/6
DEUCE Magnetic Tape Manual 10/-
DEUGE Stac Programming Ma n u a l............... 10/-
Lists of Subroutines and Programmes......... Free
DEUCE Programming Manual £1. 1. 0.
DEUCE Logical Manual Part I £1.10, 6.

Part XI (Drawings) ... £2. 2. 0.

64 COLUMN READING AND PUNCHIN&.

21 .1 INTRODUCTION.

This i s a lo g ic a l extension o f the 32 column operation described p rev io u sly . Two

separate 32 d ig i t f ie ld s are used, card columns 1 7 - 4 8 (a s used fo r 32 c o l .) being
re fe rred to as the &L - f i e ld and c o ls . 49 - 80 fo r the β - f i e l d . For 32 c o l . working,
the oC - f i e ld only i s used: fo r 64 c o l. working, both f ie ld s are used.

21 .2 64 COLUMN READING·.

The method o f reading the oC - f ie ld i s completely unchanged from the 32 column system
th at i s , an in stru c tio n using SOURCE 0 re fe r s to the oL - f i e ld and sh a l l be a stop p er. As
soon as th is in stru c tio n has been obeyed, and the next in stru c tio n enters co n tro l, the machine
w il l autom atically s t a r t to switch over to the β - f i e l d , but with the p ro v isio n th at the
cC. - f i e ld w ill s t i l l be a v a ila b le a t SOURCE 0 fo r FOUR MINOR CYCLES. T h ereafter, the s ta te

¢. o f SOURCE 0 i s not guaranteed u n t il TWENTY MINOR CYCLES AFTER THE STOPPED INSTRUCTION IS
REPLACED IN CONTROL. A fter th is tim e, the β - f i e l d i s a v a ila b le a t SOURCE 0 up to the
normal l im it o f SOURCE 0 a v a i la b i l i ty o f TWO MAJOR CYCLES a f t e r the stopped in stru c tio n .

In the sim plest language, the ru le s a r e :-

(a) Read o£ - f ie ld with stopped in stru c tio n .

(b) I f one or two more copies o f the - f i e l d are requ ired , they must be taken
immediately, using UNSTOPPED in stru c tio n s with w ait numbers o f ZERO, and i f two copies are

requ ired , the timing number o f the f i r s t SHALL BE ZERO.

(c) The ft - f ie ld i s read using an UNSTOPPED in stru c tio n , and the w ait number sh a ll
be a t l e a s t 18 , un less another in stru c tio n i s obeyed follow ing the stopped in stru c tio n and
before the f i r s t β - f ie ld in stru c tio n . In th is c a se , the w ait number may be reduced by
an amount equal to the TIMING NUMBER o f the in tervening in stru c tio n , and by a fu rth er TWO in

view o f the two minor cy cles th at au tom atically occur when any- in stru c tio n i s obeyed.

(d) T h ereafter, copies o f the β - f i e ld may be obtained up to 2 MAJOR CYCLES a f t e r
the stopped in stru c tio n .

Example 1 .

1^ 0 - 14χ f i e ld
• 1 g 0 ” 1 5 W = 18 to w ait farfS f i e ld

§ (obey in m.c. 22)

Example 2 . 1^ 0 - 14χ F i r s t f i e l d .

I 2 0 - 19 2 copies o f οζ f i e l d .
I4 0 - 202
16 26 - 14

1o 14 - 17Q
8 2 W=T=0 fo r a l l

1 n 17 - 18
1U 0 the in s tru c tio n s .

1,2 21 - 182

V ' V 21
U 6 X - ,S2
’I S 1 6 - 1 7 »
”*20 0 “ 14 E a r l ie s t y® f ie ld in m .c. 22

N.B.

The w ait number o f 12Q can be zero , as there are 9 intervening in stru c tio n s between 1 q

and I^q, allow ing the w ait number to be reduced by 18 .

LECTURE 21

DPCS2

As i s to be expected, the e a r l ie s t p - f ie ld reading in th is example i s in the same minor

cycle as in Example 1 . A check to see i f the^J - f i e ld i s y e t a v a ila b le i s to imagine a wait
number o f 18 on the in stru c tio n follow ing the stopper; the normal ru le s (m + w + 2) give the

f i r s t minor cycle o f ji - f ie ld a v a i la b i l i ty .

Example 3.

1 26 ^ 0 - ° + P 17
ζ>28 £ θ - 9QxJ Put oL - f ie ld s in to D.L. 9

1 ,, 17, - 0 + P 711 1 17
Q2^ £ θ - 100J Put β - f i e ld s in to D.L. 10

^]

s p i l l

\
127

The 171 - 0 in stru c tio n must not be l a t e r than ra.c. 11, g iv in g a timing number o f 16 to
c a l l Q2£, in view o f the v ar iab le wait number on 0 - 10.

21 .3 64 COLUMN PUNCHING

As fo r s in g le f i e ld punching, the in stru c tio n to punch the oC - f i e l d must be a stop per.
However, the time fa c to r i s not so important fo r 64 column punching, as an ex tra in stru c tio n
i s requ ired before acess to the p - f i e ld i s p o s s ib le . This in stru c tio n , 8 - 24 1 , w ill
switch immediately to the p - f i e l d , and the required word can then be sent to d estin a tio n
29 (u sin g an unstopped in stru ctio n) as soon as i s convenient, but not more than 4 major cycles
a f t e r the stopped in stru c tio n . I f the 8 - 24 1 in stru c tio n i s om itted, the word intended fo r
the (3 - f i e ld w ill be punched on top o f the e< - f i e ld word.

I f p - f i e l d punching only i s required the 8 - 24 1 in stru c tio n should be the stop p er.

Example 1 .

1 1 5 “ 29 Punch < - f ie ld .0 x
12 8 - 241 Switch f ie ld s . f a s t e s t p o s s ib le .
1^ 16 - 291 Punch {3 - f i e ld .

Example 2.

1 15 - 29χ Punch o(. - f i e l d .
1 ̂ 16 - 15

1 2 14 - 16
1 ^ 8 - 241 Switch.
1^0 15 - 29 Punch p - f ie ld in m.c. 0 .

This example shows th e p - f ie ld punching delayed as long as i s p o s s ib le .

Example 3.
1 8 - 241 Switch on stopped in stru c tio n .
12 1 5 - 2 9 Punch p - f i e ld only.

In th is ca se , the o(- f i e l d w ill remain unpunched.

21 .4 GENERAL PROVISIONS

The normal ru le s fo r c a ll in g and d e -c a llin g the reader and punch fo r 64 column operation
are exactly as fo r 32 column operation .

Since fo r any 64 column operation , there must be one or more unstopped in stru c tio n s ,
such routin es can never operate su c e ssfu lly with the machine on "STOP". This f a c t should be

bourne in mind during programme te s t in g .

- 2 1 .0 2 -

—C'2'ί *01··
LECTURE 21 (C)

DEUCE mOGRAlllII'IG FOR DATA PROCESSING· APPLICATIONS.

21C.1 IIvrRODlJCTION.

The DEUCE Mk· I i s a high speed sto re d programme d ig i t a l computer o r ig in a lly designed
fo r s c ie n t i f i c and tech n ica l problem s. Such problems involve la rg e amounts o f computation
on r e la t iv e ly sm all amounts o f d ata which, in n early a l l c a s e s , i s numeric in form ation · The
input and output operations are not b u ffe red and read ing and punching i s accom plished by
using the appropriate DEUCE in s tr u c t io n s . Only one conversion i s needed, from decimal to
b inary and v ic e v e r sa , and th i s may be done during the passage o f cards through e ith e r the

reader or the punch. Indeed, the only r e a l problem on input and output a ro se a f t e r the
DEUCE read ing and punching c a p a c it ie s were doubled, (by the in troduction o f the 64-column

machine) to 12800 and 6400 ch aracte rs per minute re sp e c t iv e ly . Some o f the conversion
subroutines fo r d ealin g with f u l ly punched 64 column card s have to work f a i r l y hard to

keep pace w ith the read er and punch. The la rg e number o f read and punch rou tin es in the
published lib r a r y i s in p re ss iv e evidence o f the f l e x i b i l i t y o f input and output with

a r e s t r ic t e d f i e l d o f 64 columns·

Data pro cessin g a p p lic a tio n s requ ire ra th e r more than can be provided on a DEUCE Mk. I
The input and output d ata i s l ik e ly to be a lph abetic a s w ell a s numeric and a l l 80 columns

» o f the card must be used i f n ecessary · These changes o f requirement have been met by
the in trod uction o f DEUCE Mk. I I . The sep ara te input and output machines have been rep laced
by a combined 80 column input-output machine which i s capable o f sim ultaneous dual o p eratio n ·
Reading and punching operations are now f u l ly b u ffe red and autom atic. B u ilt - in lo g ic a l

c i r c u i t s convert each column o f the card to a 6 - b it ch aracter in 80 column code (Appendix I) ·
Twenty-six o f the ch aracters in the code are a llo c a te d to the l e t t e r s o f the alphabet and
ch aracte rs punched on cards in I.B.M . 4-ZONE code a re sto red w ith in DEDCE in the form

shown in Appendix I . Standard numeric punching i s a lso converted to 6 - b it code and
numbers on card s a re represented w ith in DEUCE in the binary-coded decimal (B .C .D .)
n o tatio n . The DEUCE arith m etic and lo g ic a l c i r c u i t s a re not designed to operate d ir e c t ly
on numbers sto red in th i s form and conversions from B.C.D. to Binary and back to B.C.D. a re
frequ en tly occurring requirem ents· Such conversions can take p lace only a f t e r a card has

been completely read in to DE17CE or b e fo re a card i s punched o u t, un like the conversions
on 64 column operation which occur during the passage o f ca rd s ·

Not unnaturally these d iffe re n ce s o f input-output o rgan isation have le d to d iffe re n ce s
φ in programming technique· Whereas mathematical computations a re r a re ly concerned with

' more than one p a ir o f conversions from decim al to b inary and back a g a in , d ata processin g
a p p lica tio n s are l ik e ly to c a l l fo r many o th e rs , such &a those from binary pence to s te r l in g
and b in ary pounds weight to to n s , hundredweights and q u a rte rs . A ll th ese conversions are
accomplished by subroutines o f DEUCE in stru c tio n s which, id e a l ly , should be very f a s t and
economical o f in s tr u c t io n s . Such subroutines should a lso be a s comprehensive a s p o ss ib le

and techniques a re a v a ila b le fo r two way conversions between binary b a s ic u n its and binary
coded ch aracte rs in p r a c t ic a l ly any other form o f un it in current u se · There a re d i f f i c u l t i e s

however in making a com pletely gen eral ro u tin e . I t i s ra th e r l ik e inventing a machine
fo r p e e lin g potatoes which a ls o mows the lawn and anyone faced with tr ic k y conversions i s
advised to con su lt the programming s t a f f o f E nglish E le c t r ic when the f u l l b e n e fit o f th e ir

advice and experience w i l l be made a v a i la b le ·

Since most programming d i f f i c u l t i e s in data-processin g a p p lica tio n s s t a r t w ith the
punched cards them selves th i s to p ic w il l be a reasonable one with which to begin a d e ta ile d

d isc u ss io n ·

DPCS2

21C.2 PUNCHED CARDS.
Computers use punched cards and human beings use computers. Human beings, moreover,

claim the freedom to punch their own cards in any manner they choose. Not only do card
layouts differ for different applications (which is reasonable) but punching conventions
differ for identical forms of information (which is not as reasonable).

There are 12 rows on a standard punched card and any single column may be punched in
any or all rows, giving rise to 2 (4096) possible combinations of hole patterns in
any column. Fortunately no one ever tries to push things quite as far as this and it is
generally agreed that 64 different combinations are sufficient for most purposes. The
same number of different patterns can be obtained in a 6 digit binary number and it is
possible to arrange a one to one correspond ence between 64 selected punch characters and
64 six-digit binary characters.

The binary numbers 0 to 9 are allocated to the conventional 0-9 punch patterns and
in general the code is chosen to make things as convenient as possible. But once the
code is chosen it is fixed for all time. The computer is wired in accordance with the
chosen code and correspondence between information on cards outside DEUCE and the same
information inside DEUCE is completely determined.

There aK *tl»er things to consider however. Punched cards are used by Tabulators
as well as by computers and there is also a correspondence between punched hole patterns ‘
and the characters printed by a selected type bar. Now Tabulators can be obtained with
a fair degree of flexibility and any given punched card installation can choose its
Tabulator to conform with its own punch conventions. On a computer however different
punching conventions are met by writing different sequences of instructions in the programme
and it is this which makes general subroutine construction difficult.

As an example, consider only four of the many different methods of representing
sterling on a punched card. Figure I shows a card punched with £124* 15· 10d. in four
different ways, A, B, C and D.

/) B c 0

i i i ! ! m ! P",
i J I M i ii 0 * ! s s « ! : *
\ t t I j i » ' i \ t l {/ |
|a i I 1 I 1 * I * ; I

t i j * ! j i ! * j i
F i 1 s ! j f I t ;

I I i ! i i
i i ! I I i
: : : * ! : 1: : : j 1 :

_ i_________________ i i ._____________ l : ■________ I______

A uses 7 columns. Two columns are used for both shillings and pence.
B uses 6 columns. Two columns are used for shillings and only one for pence with the

convention th at X a 10^ and Y = 11d .
C u ses 6 columns. I t i s the same a s B with the d iffe re n ce o f convention th at X = 11d

and Y = 10d .
D uses 5 columns. Only one column is used for shillings and one for pence. In the

cl d
s h i l l in g s column X = 10/- and the pence convention i s X = 10 and Y = 11 .

DPGS2

-C 2 1 Ιθ 2 -

F igu re 2 shows the ch aracters which would appear in DEUCE corresponding to each type o f
punching, togeth er with the b inary number 29950 (rep resen tin g pence) to which each o f th ese

must be converted b e fo re any arith m etic operation s can be perform ed·

A o i S' / y a / \

$ x s / «■ a / ~~ | ~~ \

C y ϊ t ¥ λ. / - - - - \ I

, D x x) f ¥ A > - “ “ “ “ \

50 jfOOfO / / / .,.........········ Α.ηι«· I· .M· HWM Μ ·······* »·Μ«· ■■·■■■·*
/

I
So there we a re fo r a s t a r t · Pour d if fe re n t methods o f punching the same th in g , four

d if fe r e n t s e t s o f DEUCE ch aracters and a l l must be turned in to the same b in ary number by

programme. That i s not a l l however· The same kind o f low cunning in sav in g columns o f
card s tak es p lace in decimal to o . By using the X row fo r 10 and the Ύ row fo r 2C,,numbers

up t o , sa y , 29999 may be punched in only four columns o f a card . T h is i s a t r ic k which
would appeal to anyone who wanted to represen t up to 27 l b s . (28 lb . = 1 Q tr .) u sin g

only one column.

Wherever p o s s ib le card layout and punching conventions should be chosen to sim p lify
programming. I f the card layout i s determined by previous usage or fo r reasons o f column

economy these co n sid eratio n s take p r io r ity ,b u t the rou tin es fo r packing , unpacking and
conversion are not l ik e ly to be a s simple a s they might be*

21C.3 THE DEUCE 80-C0LULH CODE.^ --— ----------------------

The complete code i s given in Appendix I but i t may be necessary to p re d ic t the
ch arac te r whioh w il l be formed fo r a punching combination not given in the l i s t · The
co n stru ction o f any ch aracter from a given p a tte rn o f h o les in a column i s accomplished
by a llo c a t in g v alu es to each row a s fo llo w s:

Rov1/ Row Value C haracter F in a l R esu lt

Y 16 000010 000010
X 32 000001 000001
0 i|B 000011 000000

1 1 100000 100000

2 2 010000 010000

3 3 110000 110000
4 4 001000 001000

5 5 101000 101000
6 6 011000 011000

7 7 111000 111000
8 8 000100 C00100

9 9 100100 100100

DPCS2

A fter a card i s read in to DEUCE the complete array i s scanned au tom atica lly and a l l '4 8 '

ch aracte rs rep resen tin g 0 Row punchings a re converted to z e ro . Blank columns are read

a s zero and converted to 15 (111100). I f two or more h o les a re punched in a column the

f in a l ch aracter i s the lo g ic a l sum (i . e . v/ithout carry d ig i t s) o f the ch aracte rs appropriate
to each row. Any common d ig i t in the sep arate row p a tte rn s are shared in the f in a l ch a ra c te r ·

Examples.
(a) 2 Row and 8 Row. 2 Row g iv e s 010000

8 Row g iv e s 000100

R esu lt 010100

(b) 2 Row and 3 Row. 2 Row g iv e s 010000

3 Row g iv e s 110000

R esu lt 110000

Two im portant c a se s a re :

(c) Y row and 0 Row. Y row g iv e s 000010

0 row g iv e s 000011

R esu lt 000011mem (

which i s f in a l ly changed to 000000

(d) X row and 0 Row. X row g iv e s 000001

0 row g iv e s 000011

R esu lt 000011

which i s f in a l ly changed to 000000

Examples (c) and (d) exp la in one o f the s l ig h t inconveniences o f the code. Where Y and X
punchings a re used fo r p o s it iv e and negative s ig n s overpunched zeros are in d istin g u ish ab le

from unsigned z e ro s .

21C.4 THE DEUCE CHARACTER STORE.
To read a card with the 80 column machine an in stru c tio n 12-24 1 i s req u ired . This

in i t i a t e s the passage o f one card through the rea d e r . During continuous reading o p era tio n s, <*“

(12-24 1 i s needed fo r each card) the cards p a ss through the read ing s ta t io n a t a speed
o f 200 card s p er minute and one card cy c le i s thus

60 x 1000 ___ . .---- -------- = 300 m illise co n d s.

There a re twelve rows on each card (and eleven spaces between than) and the equivalent
o f three spaces se p ara te s one card from the n ex t. The time to read a l l rows o f one

card i s thus
11 x 300 S 235 milliseconds.

from the Y row to the 9 's row.

Roughly th i s length o f time e lap se s a f t e r the Y row p a s se s the reading brushes b efo re
the complete card 13 presen ted in ch aracter form in D.L. 12. The standard arrangement o f

ch aracte rs in D .L.12 i s shown in P ig . 3 which assum es:-

1. the use o f a standard plugboard,
and 2 . th at the card i s read in to minor cy c le s 0- 15 »

-C 21»04-

DPCS2

° CP to j CP 79 !·...... C f 77........L„ ! 7 Γ
I CP I f ! CP j CP 73 i * / · » * ! CP 7/ k \ \ \ V \« . · · . · · ·*· « #., *,,..**■*

ί ; ! ! I j 1 i 1
¥■ i (! ; ' !
s ! ! ! i !

: ; 1 . j i : 1 1 1 1

J ! 1 ! 1 i : i * ! 1
« I I , i . i !
// i i I , S . i ·
/« ! t , · : :
/3 · ! i t i 1

>* ■ ! { .i] ■ ί
is i : cP3] . . . f / i . j c p / ; Ν\ \ \ \ \ \ \
16 __

J

Figure 4 shows a punched card and Figure 5 shows the arrangement of characters
appropriate to it. Each character is indicated in its correct position and denoted by
the numeric value of the character as well as by an alpha numeric symbol.

0 i a . > t S t 7 i l po cD i / i eHXT i t L * i i oPo i i s r o/WAY* ___________________ p ropkamp > m e*>ua ; a -----.
-----------m m u __ * « * * *---- «---
___ Μ Λ * «.*■ » ̂ X
x _______ x * ■■■■—
- Ϊ ------------------------------ S_________________ S___ ________________________ _____________ 2 ---------- ----------- ---------------------------------X x x / K

x___________ ________________ ί___________ 2_______ ___« * X ------- --------
_______ 6_________________ * _________________ X_______________ i___ _____________________________ I1, d - — -------------

_______ x__________ X________________ X___________ X___g_______ ________ ________S---- -
----------- 2----------------- X_____________ X____________s_______________________________ ;_________A_________________________________
------------- 2---- ------------2_____________ ί___________ * ·._______________________________ a__________ft -----------------

x ___________X_________________ X__ ____________ X ___ ______________ —

» x x x a. x * -■&— -—

— — —— . --- f" ■■ . . I— .yi | —*
0 $p* ce ! s p a c e : £ \ S · ft

1 Λ i 0 i ο I C I Spaca
*M “ « · · » · · · · * · · ♦ · · · · · · · · · · · · · · · * * * * · * · * * * * * * · · · · . · « « · ! · · Μ · «Μ· · · · MM · · · · * · · · · · · · £ · · « · · · · · · · · · · · · · mA · · · y· · » · · · · * * 1

2 <5 · λ/ : / · Λ ί ; Λί j Λ
.............................. *........ V**...........*........%..... t......——......,·····I................... ·£ ····*····\

3 ft ! /3 · 6 : 0 ‘ Λ |n \ \ ^ ^................. i.---;.......—'....j..... *
f _____ P m____PAef.„ j s p a c £ sPAc t ; spa c l ! s p -

ί : Sp a c s ___ j__$ppc g. · sPf i c t ! SPAce j^N x x
i · gppce : s p a e g j s P * e e j s p a cg · SP -

J ****** ******** * * ** **· ·«·««·« **9* ·Μ*Ϊ· · ·« *M · · · · · · f ···/ ·· · · · · · · · · « · · ···.·· A · «·· ···**"

7 A d i $Pa <i£ I s p a c s l spAce j SPAce k \ ' N \ x
··» ·*♦· M·· · · · ·* · · · · · · · * tlll.IMmMM.tftl· ····*« aaa *·**♦ ̂ H 11 _H .» ..ΜΙίΙΙΙ*^.............

? SPAce i SPAce : SPpce \ SPAcg · t j y

1 / I X j W V " I y L\ N \ \ N
t oT! 5 | d i d \ p ; of **** ********* ***?********* ··*»·*·»* · MM(* **·»**······■ ······! I········ ·■ ····· ····♦ ··· · · · ·*··**
H 0 i N * M · l · u ϊχ\\\,\ 'I ······ ······ •••Ι·······Ι···ΜΜ(•••.••«•..·|·„(|< I *■ J ·* J **■···

t i ^ · I H : Qr s f ; ί... -...γ·— *-...... ,...„....,.. ·..... — v.........
IS & j o i C : o i Λ

_ ! i · — J............................ ·-1........- - .
‘1? J 7 i 6 ! r

“Ί y j 3 ; XT........V.......Γ ' " οΙ ^ λ Ν'.." ... * *
DPCS2

21C .5 TERMS USED IN 60 COLUMN FR0GRA1J.!ING.

Read S to re (R .S «)

16 consecutive minor cycles of D.L.12 into which the eighty columns of a card are
read following an instruction 12-¾ 1. The wait number and instruction minor cycle of
either 12-24 1 or 10-24 1, whichever is first given, determines the READ STORE.
Standard Read Store.

Minor cycles 0 to 15 of* D.L. 12.
Standard Character Positions. (S.C.P.)

The character positions in a standard read store with CP80 in P^g of m.c· 0 and all
character positions following in descending sequence to CP1 in 1*22-27 m,c* ^ as
shown in Fig. 3·
Read Store Locations. (R.S.L.)

Some programmers prefer to define a character position as a READ STORE LOCATION» with
R.S.L.'s numbered from 1 to 80 starting at R.S.L. 1 in of m.c· 0.

i.e. R.S.L. 1 CP80
R.S.L. 2 CP79
and so on. V.

Standard Plugboard.
A plugboard which causes all columns of a card to be read into the correspondingly

numbered character positions i.e. such that
Col. 80 is read into CP80
Col. 79 is read into CP79
and so on.

Pivots.
It is convenient to have some term for the least significant character position

in each minor cycle. CP's 80, 75» 70, 65, 60, 55, 50, 45, 4D, 35, 30, 25, 20, 15, 10, 5
are defined as the PIVOTS and CP's 80, 70, 60, 50, 40, 30, 20, 10 are defined as the
EVEN PIVOT. The even pivots are the bottom character positions in each word pair·
Punch Store.

The 16 consecutive minor cycles of D.L. 12 not occupied by the read store·
Standard Punch Store»

Minor cycles 16 to 31 of D.L.12.
Word Pair P Positions.

One DEUCE word pair can accommodate 10 continous characters in five different ways·
The least significant digit of the least significant character may be located at P^ 2 3 4 017 5
of the less significant word· Taking 10 characters in DS21 by way of illustration we
have the following possibilities.

-021.06-

DPCS2

i j j I Π i j j j !
/ \ 1 \ 3 \ >/ \ r \ < \ 7 i g \ 9 \ /0 \

Atr,) I ! ____ i____i__

ΤΤΊ I ! I ί] I I ί ΠΓΤ
β (/·,) i : : s II i I I i I

: j i i i i j : i: . : · J ! j · : i :
C (As) ; - 8 s i___ I I____!____i___i____ lJ
.O (Py o/t'frtj)----- --------- --------- ;-------- ;-------- 1-----1— -------- !-------- j-------- 1-------- 1--------

*(f>d 1 1 i I S i__Li ___ S------ 1------ ί------ 1------

C i s an im portant co n figu ratio n . The 5 le a s t s ig n if ic a n t ch aracte rs a re contained in 2tg
with and P^ a s the spare d ig i t s and the 5 more s ig n if ic a n t ch aracte rs a re in 21^ with
spare d ig i t s in P ^ and P^g* In th i s arrangement the 10 ch arac te rs a re s a id to be " s p l i t
in 21g " . A statem ent "Fetch ten ch aracters to P^ in 21" means "E x trac t ten ch aracte rs from
wherever they may be sto red and p lace them in DS21 a s shown a t C above".

Packing and Unpacking.

Tiiese a re terms meaning the e x trac tio n or assembly o f se le c te d ch aracters from

the ch aracter s to r e .

L e ft J u s t i f y .

Up to ten ch aracte rs may be e x trac ted from any ten consecutive ch aracter p o s it io n s
o f the ch aracter s to re and p laced in a US with the l e a s t s ig n if ic a n t ch a ra c te r in the l e a s t
s ig n if ic a n t d ig i t p o s it io n . Characters so p laced are s a id to be "L e ft j u s t i f i e d " , i . e .

lin e d up with the l e a s t s ig n if ic a n t ch aracter a t the le ft-h an d end o f the D .S .

210.6 DATA PROCESSING· SUBROUTINES.

The lo g ic a l stru c tu re o f DEUCE, which determ ines i t s order code, perm its operation s
on words (o r b locks o f words) o f 32 d ig i t s . There i s now a v a ila b le a v a s t s to re o f
programming technique fo r handling problems which are concerned so le ly with 32 d ig i t word

o p era tio n s.

' Data p rocessin g a p p lica tio n s however g iv e r i s e to a requirement fo r operation s on
, groups o f ch a ra c te rs . S ince the DEUCE has no b u i l t - in f a c i l i t i e s e sp e c ia lly adapted to

character m anipulation, a l l such operations must be programmed w ithin the framework o f
an order code which i s designed to d eal w ith 32 d ig i t words. The compact form o f ch aracter
s to re i s such th at an item o f inform ation comprising se v e ra l ch aracters may extend over
two or more DEUCE words s ta r t in g in the middle o f one and ending in the next and th is im plies
th a t packing and unpacking w il l involve exten sive use o f the lo g ic a l operation and sh if t in g
fu n ctio n s.

Several subroutines have been constructed to i l lu s t r a t e techniques which are u se fu l
in ch aracter m anipulation. These rou tin es f a l l in to two c a te g o r ie s , those which d ea l

w ith fe tc h in g , s to r in g and re-arrangement o f the ch aracte rs w ith in the ch aracter s to re and
those which a re concerned with arith m etic operation s on ch aracters and conversions between
b inary coded decimal and b in ary .

10 Character Fetch from D.L. A.

I f a standard read sto re i s tran sfe rred from D .L .12 to any other delay l in e D.L.A

(o r l e f t in 12) there i s a requirement to ex trac t any number o f consecutive ch aracters

from any p o s it io n o f the s to r e . 10 ch aracters i s a reasonable maximum fo r one entry

DPCS2

to the routin e and th is l im it has been chosen. Before en terin g the subroutine i t i s
necessary to sp e c ify two th in g s.

1 , The number o f ch aracters requ ired n (^ 10).

2 . The le a s t s ig n if ic a n t ch aracter p o s it io n .

On e x it from the subroutine the n ch aracters are in DS21 a t P„ p o s it io n in 2 1 Unoccupied

ch aracter p o s it io n s a t the most s ig n if ic a n t end are f i l l e d out with z e ro s . A f u l l
d e scr ip tio n i s given in the in stru c tio n s fo r use in Appendix 2 .

Character S e le c t or R e je c t .

I t may be necessary to block out c e r ta in a re a s o f the ch aracter s to r e , rep lac in g se le c te d
ch aracters by z e ro s . A subroutin e, described in d e t a i l in Appendix 2 , has been constructed
to do t h i s . C haracters in one word p a ir may be se le c te d (i . e . l e f t in the ch aracter
s to re) o r r e je c te d (i . e . rep laced by ζ*τπγ.) a t one entry' to the ro u tin e .

Before entering the subroutine i t i s necessary to sp e c ify

1. VTiich word p a ir i s to be m odified.

2 . How many ch aracters in each word o f the p a ir a re a ffe c te d and whether se le c t io n

or r e je c t io n i s req u ired .

In se r tio n o f Space Symbols or Zeros in Character S to re .

This i s s im ila r to character s e le c t or r e je c t . T his rou tin e however perm its the

u ser to sp e c ify v.hether re je c te d ch aracters are to be rep laced by zeros or space symbols
(to create blank columns on punch o u t) .

21C.7 CONVERSION ROUTINES.

Before d escrib in g the conversion rou tin es i t i s probably not out o f p lace to d isc u ss

conversion methods. These in turn a re dependent on a number o f f a c to r s among which are

(a) The maximum value o f the nuiribers to be converted.

(b) The speed o f the method..
(c) The number o f in stru c tio n s requ ired .

(a) Number Range .

Bearing in mind thav. conversions d iscu sse d in th is se c tio n are those from 6 -b it B.C.D·

to b in ary and back a g a in , the maximum l im it s may be se t by e ith e r (1) the binary capacity
? A

o f a s in g le DEUCE word, (2J - 1) or (2) the decimal cap ac ity o f 5 o r 10 ch a ra c te rs . We
could o f course choose to work in double length b inary numbers and use more than 10
c h a ra c te r s , but i f we do. the conversions 1(0.11 be more com plicated. The b a s ic binary u n its
a lso determine number capacity in ch aracters a s the follow ing examples shew.

Example 1 . ___ _____ ________ _________ _________ ___________

10° 101 102 103 10^

using 5 c liaracters for· rep resen tation o f DECH.IAL d ata the maximum number which can be held
p

i s 99999, i . e . < 103. In binary' t h i s i s 31, 20, 1 , 3 i . e . l e s s than 2 , showing th at binary
n otation i s a much more compact form than 6 -b it B.C.D.

I f two DEUCE words are used fo r 10 ch aracte rs the maximum number which may be

represented in B.C.D. i s 9 ,999 ,999 ,999 · The binary equ ivalen t o f th is i s ou tside s in g le
len gth , however,and i f we lim it our range to s in g le length binfiry the maximum number

w ill be 231- 1 .

Example 2.
5 ch aracter S t e r l in g . ______ __________ __________ __________ ___(

a S 10/- £10° £101

- 0 2 1 . Οδ-

DPCS2

The maximum number o f pence in th is ca se i s th a t corresponding to £99.19.11(3,. which i s1·=,
23999. In b in ary th is i s 31 , 13 , 23 ,i e . , l e s s than 2 ' * The packing e ff ic ie n c y o f B.CiDi

i s worse in t h i s c a se . The pence ch aracter i s holding s l ig h t ly tnbre thflii Hi ft declined,

number bu t the 10 /- ch aracter i s holding considerab ly l e s s .

Example 3 «

10 ch aracter s t e r l in g .

Using 10 ch aracte rs and with the same pence and s h i l l in g s arrangement a s in Example 2
we can hold £9999999* 19. 11 d . in two words. T his rep re sen ts more pence than can be

31held in one s in g le length number and i f we l im it o u rse lv es to (2 - 1) pence,the maximum
value in s t e r l in g w il l be £8947848. 10 . 7d . which may not be la rg e enough fo r banking or

insurance a p p lic a t io n s but w il l probably be q u ite acceptab le to most people*

(b) and (c) Speed and In stru c tio n Space*

I t i s probably tru e to say th at the b e s t routin e made to d ate i s always tw ice a s
slow and u se s twice a s many in stru c tio n s a s the oust oner w ants. When we make a routin e
tak ing no time a t a l l , handling an unlim ited range o f numbers and usin g only one in s tru c t io n ,
we s h a l l pu t the f l a g o u t. In the meantime the e f f o r t s towards th is id e a l have not been
unim pressive jraich depends on the b a s ic method o f a t ta c k . There a re programming techniques,

fo r example, which pro cess each d ig i t o f a word in conversions from e ith e r B.C.D. to b inary
' ' or binary to B.C.D. Bearing in mind the f a c t th a t i t w ill probably take a m illiseco n d loop

to d eal with each d ig i t such methods a re alm ost bound to be too slow. There a re t r ic k s
o f the trad e which perm it such methods to be done with only 10 t r ip s round the lo o p , in ste ad
o f 3 2 , but even th is improvement i s hardly worthwhile.

The next c l a s s o f conversion methods d ea ls with one ch aracter p e r m illiseco n d loop *

Taking the conversion o f a ten ch aracter number from B.C.D. to Binary the block diagram
o f the method would be a s fo llow s

p - T

~ ~ n .. 1____________

--------------------- *

- ___ _________________________

L /0 .J \jn

daiAcj&Ai

*

DPCS2

To convert binary numbers to characters the first move is that of dividing the number by
a scaling factor to produce a binary fraction, preferably to 32 b.p.

0
Suppose we have a number N less than 10 which is to be converted from binary

to B.C.D. We divide by 10^ (to 1 b.p.) and obtain ^/10^ to 32 b.p.
Successive multiplication by 10 vdll bring up each figure of the number one at a

time and these can be packed as successive six bit characters. This method (and the
corresponding character conversion of B.C.D. to binary) is adopted in Subroutines P23E and
R27E. The flow diagrams of these subroutines which are the most comprehensive yet made
are given in Appendix 2. In addition to performing both input and output conversions,
these routines also extract and insert characters at specified positions in the character
store.

Following the more conventional one character at a time type of conversion are the
methods which deal with 5 6—bit characters or 8 four bit characters in one multiplication
or division operation. The DEUCE multiplier-divider can be programmed to perform the functions
of an automatic converter. These techniques, which are slightly unorthodox, are fully
described in DEUCE News No. 36. Several routines which use these methods are included
in Appendix 2 and the instructions for use adequately describe the special purpose
ones· However, one routine using a form of radix control is fully generalized. This
will now be described in some detail. (
General Purpose Conversion Routine·

This is a double entry routine using 26 instructions which converts 5 6-bit B.C.D·
characters to binary or binary to 5 6-bit B.C.D. characters, taking 2gnus· for the
first operation and 3½ m sec. for the second· The type of conversion (end the relation
between the unite) is specified by constants which must be placed in QS17 and DB19g Before
entering the routine. The constants placed in 19g &re known as "fillers" and are needed
in the case of Binary to B.C.D. only. Suppose we have any five digit number N = ABODE
situated in character form at Pg position in a DEUCE storage location as shown

e d c b a
/*, ------------ ------ -- --- ------ WTo convert this to binary we use Entry 1 of the subroutine as follows

N (abcde)p -21,
*2 ^

Constants - 17 (4 m.c.)
Link - 13

**/' 1 ' 1
150 (LINK)
Result NP1 (binary) in 21^
after 2-̂- m sec.

Now suppose we wish to reverse this procedure. We have binary number N which we wish to
convert to character form. The procedure is

NP1 - 21 ̂
Constants - 17 (k m.c.)
Fillers - 19g
Link - 13

l ~

13Q LINK
Result Γ~β d c ~b a in 212 after 3½ msec.

f, ^

DPCS2

ιίση let us look at some of the possible forms of N = abode as listed in the table
below:
Units* N = abode N (binary)1 ~ ~ , 3 2 QDecimal. ax1Cr + bx1Cr + cx10 + <3x10 + ex10 binary
Sterling. £a.10 + £b.10 + C(10/-) + d (s) + e (pence) binary pence.
Weight. ax10^ cwt. + b.10^ cwt. + C(QTRS.)+ d (stones) + e (lbs.) binary L.B.S.
Length. a furlongs + b chains + C* (blank) + d (yds.) + e (ft.) binary feet.

1 0 1TIME (or a hours + b.10 min. + c.10 min. + d.10 sec. + e. sec. degrees, binary seconds,
angular measure)
In each of the systems of units shown an integral multiplier connects one unit to the next
higher unit. Denoting the multipliers quite generally we have, from

e to d, m. i.e. m. e = d
d to c, mg i.e. nyl a c
c to b, m^ i.e. m^c a b
b to a, m^ i.e. tr̂ b = a

For the cases above ,ιη̂ ,ιη̂ , m^ take the following values.

m* ^ m3 \
DECIMAL 10 10 10 10
Sterling 12 10 2 10
Weight 14 2 4 10
Length 3 22 1* 10
TIME 10 6 10 6

*N0TE: Blank characters may be generated to allow expansion from single conversion
to double character representation. This is necessary in cases such ae 12
pence, 22.yards etc.
The rules for blank units are, for example,

22 yds. = 1 blank unit.
1 blank unit = 1 chain.

Another useful dodge is the introduction of unusual units such as 6 or
4r chains.

. e.g. 6̂ , 6 pence = 1 (6)̂
\ chain, 11 yrd. = % chain.

IMPORTANT: Conversions can only be carried out for systems of units for which
integral multipliers exist between units.
The conversion routine can not directly handle systems such as the following

pence 10^ shillings
yds. 10' yds. chains.

| Tbl 10' lb. |QTRS.
because there are no integral multipliers between 10 and shillings, 10 yds.
and chains or 10 lb. and QTRS. In these cases blank units can be left
or use made of the 6 or 5 chain dodge to leave a character space for
subsequent adjustment outside the routine.

The constants which would be required in QS17 in each case are listed below for each
minor cycle.

DPCS2

1 UEC'L J.L Sterling LB V/T Length TIME
17 26 .10^ 26 .2400 26 .1120 26 .660 26 .3600
17 212.103 212.2L0 212. 112 212. 66 212.600
17 218.102 21B,120 21°.28 224.3 218.60
17 ̂ 224.101 2 ^ .12 2^.14 2^.3 2^ . 101

There is another constant 23<~* built into the subroutine to handle the bottom character
•which in all systems must be the same in character form as in binary.
The Fillers required are

DECIMAL 54 Pg + 54 Pg + 54 ?1;+ + 54
STERLING 52 Pg + 54 Pg + 62 P1/+ + 54 Pg0
LB V/T 50 P2 + 62 Pg + 60 P14 + 54 Pg0
Length. 61 Pg + 42 Pg + 63 P ^ + 54 PgQ
TIME. 54 Pg + 58 Pg + 54 P.^ + 58 PgQ
General. (64-B»1)Pg + (64-3ig)Pg + (64-10̂)?^ + (64-m^)PgQ

Some examples will now be given illustrating the use of this subroutine.
Example 1.

6Input cards are punched with Sterling in the range less than £10 . Ten columns
of the card are used as shown

f jf I £ i £ ">/- s /ο* Ί

/0* /0* /o’ /01 /o' /o‘

It is required to convert amounts expressed in sterling to binary pence.
The characters which are produced within DEUCE are as follows.

at /ad S ,0l · £/»' £ ,0‘ £ ' ° l £ / o s £/o" £ / o e

Method: (i) Convert the 5 most significant characters as DECIMAL, multiply
by 2400.

(ii) Change the form of the 5 least significant characters (by logic) to
either of those s h o w n _______

d Blank S 10/- £10°- 0
d 6a S 10/- £10

(iii) Using the appropriate constants convert the 5 least significant characters
to pence.

(iv) Add the contributions from (l) and (3).
Example 2.
Lengths are punched on cards in units of 10,000 yds. and ft. as shown

/0* to* ό ’’ ,e ^
ft yd ytj yi yd yd

It is required to convert these numbers to binary ft. There are 6 characters and
it would be a waste of effort to follow a similar method to Example I» and use the conversion

-C21 .12-

DPCS2

routine to convert only one character (representing W f yds·) when all we need is a
multiplication·
Method: (i) Extract the 10^ character and multiply by 3 x 10¾

(ii) Convert the 5 least significant characters to feet using the constants
26 . 103 . 3

212.102 . 3
218 . 101 . 3

2* 10° . 3

(iii) Add the contributions from (i) and (ii)·
In the reverse conversion it is necessary to know how to perform integer divisions·

Details of this technique are given in the next section and for the present it will be
sufficient to assume that integer divisions are possible·

Example 3«
To convert binary pence to sterling, using single column pence (with the convention

Y = 10¾ X = 11¾ up to a maximum of (231 - 1) pence·
2Method: (i) Divide the pence by 240 x 10 (the number of pence in £100) to obtain

a quotient (q) representing the number of £100 units and a remainder (R)
} representing pence·

(ii) Convert Q using DECIMAL conversion to obtain characters as shown
£102 £103 £10^ £105 £106

(iii) Convert R using STERLING conversion with single column pence to give
d S 10/- £10° £101

(iv) By logic change the 'd' character to 16 if d = 10 and to 32 if d = 11.
(v) Merge the two sets of characters from (ii) and (iii)

Example 4·
A binary number representing yards is to be converted to MILES and yards· Powers of 10

of MILES and yards are to be generated directly.
Method: (i) Divide the original number by 1760 to give a binary quotient Q representing

MILES and a remainder R (< 1760) representing yards.
(ii) Convert Q using DECIMAL constants to give ______ i

10° ΜΤΤ.ΤΚ 101 MTT.ER 102 MTT.TCB 103 MILES 10^ MILES
(iii) Convert R using DECIMAL constants to give

10^ yds· 101 yds. 102 yds. 103 yds· 10^ yds.
The 10^ yds character will be zero and the two sets of characters from (2) and
(3) may be merged finally to close 1¾) this gap giving

10° yds 101 yds 102 yd 103 yd 10°M 101M 10¾ 10¾ 10¾
The universal conversion subroutine is a fairly powerful programming tool but like

any other tool the operator must be prepared to use it intelligently. A universal screw
cutting machine is also a powerful tool and anyone knowing how it operates can work
out the settings to cut any given length of screw to specified tooth depths and pitch
but no one ever does. A table of settings is provided and it is only necessary to look
up the details for a particular requirement and screw cutting ceases to be a skilled
operation. The ability to think is replaced by the ability to read. To overcome the errors
which are likely to creep in through miscalculation of constants a table is provided for the
universal conversion routine. This shows a fairly extensive range of possible conversions
together with the constants required in each case, in.both decimal and binary, limits
UFCS2

-C^l. 13-

are given for 5 characters and 10 characters for each character layout and the 10 character
limit assumes that the 5 more significant characters are powers of ten of the same unit.
The divisor required for integer division is also provided and the sequences of instructions
for integer division will now be described.
210.3 INTEGER DIVISION.

The DEUCE divider normally produces a binary fraction to 31 b.p. and it is necessary
to use the divider in a rather special way to perform integer divisions.

Two methods are available to permit division of a positive integer A by a positive
integer B to give positive integral quotient and remainder related by

A + OB + R
e.g. 3 goes into 29to give 7 and 2 over

or 29 = 7.3 + 2
where A = 29 s B = 3» Q = 7 and R = 2

The methods are known as Type I and Type II, and Type II is used to obtain true remainders
in these cases where Type I is not adequate.
Procedure.

(1) Consider the range of numbers A which are to be dealt with. If the top digit ^
of the maximum number in the range is P^q or less use Type I. If it reaches P31 Type II
is necessary.

(2) Shift B up n places until the top digit of 2 ¾ is the same as the top digit of
(A)' 'max.

(3) SkesJ c*
(a.) Start a DIVISION (1-¾) of A by 2 ¾ in minor cycle m.
(b) Clear 21 g in minor cycle m+3·
(c) Extract the contents of DS21 in minor cycles m+4 + 2n and m+5+2n

using SOURCE 22. These are the quotient (from 22^) and an uncorrected
remainder (from 22,)

(d) Add the divisor (2¾) to the uncorrected remainder to give the true
remainder shifted up by 2

(4) Tyre II.
(a) Start a DIVISION (1-¾.) of A by 2 ¾ in minor cycle m.
(b) Clear 21^ in minor cycle m+3.
(c) Extract the uncorrected remainder in minor cycle m + 2 + 2n.
(d) Extract the true quotient in minor cycle m+5+2n.
(e) Correct the machine remainder as follows

(i) If the bottom digit of the quotient (P̂) is zero add the divisor
(2¾)

(ii) If the corrected remainder has a digit remove it.
The correct remainder th.ll be produced with a shift of 2n.

2xmi.T>le 1.
SGiven a binary number Λ (< ?9·’·0 . 10"' representing LB Yft?. To obtain a quotient

representing, binary' TOIS and a remainder in LBS. VTe need to divide by 2240 = B. Now
2240 is 0 6 2 and the top digit is P12· The maximum value of A is 2240 . 10^ which is
0 0 30 19 21 6 with a. top digit cf p^, so Type I may be used. The top digit of B
is and we shall need a shift of 28 - 12 = 16 to move the top digit of 21^ to P_0.12 ‘ 2o

—1 I · I if—

DFCS2

A - 21
(216. 2240) - 16

1 - 2 4 (m.o. m)
30-21^ (m.o. m+3)
16-13 prepare to correct remainder
22 - 20 (d) m.c. nn4+(32)

m+5+(32)
20^- 25 correct the remainder

Result. C]P1 in 20g
RP18in 13 (i.e. 217 . R)

Example 2«
31Given a binary number A (< 2) representing pence. To obtain a quotient representing2£10 and a remainder in pence. The top digit of A is so Type II is needed . We shall

require to divide by the number of pence in £100 i.e. B = 2400 which is binary is
0 14 23 with a top digit of P.R. The number of shifts to move the top digit to P_.1g '■> J'is 31-15 = 1 6 so-we form 2 , 24000 and proceed as follovra

A - 21,3
(2 .24000) - 16

1 - 2 4 (m.c. m)
30 - 212 (m.c. m+3)
27-14
22y 13 m.c. m+2 + (32)
22p- 15 m.c. m+5 + (32)
25-28n » / χ »

1 -1 _ 16-25

^ 13"- 27t / V
1 -1 ^ ^ 29-25

Result. ίίΤΤ*' ' * ' " 4 C
RP1?in 13 (i.e. 2 .R)

/
21C.9 MISCELLANl'QUS SUBROUTINES.

1. Character Add-Subtract.
Where only additions or subtractions of characters are required this can be done

directly and conversions from B.C.D. to binary and binary to B.C.D. may be eliminated.
'Suppose we wish to add two numbers in character form such as 1 7 3 9 2 4 and 4 8 3 2 7 1 5·
These are presented as

4 2 9 3 7 1 l 0 1 0 I 0 10
and ΓΠ T 2 3 8 * 0 0 0
and the sum can be formed directly as

9 3 6 6 O O 6 0 0 O
Subtractions can also be performed by a different entiy to the subroutine and in the event
of a negative result (which would produce the 10's complement) a second subtraction is
performed automatically to give the modulus with a sign digit in the top character.

2. Read and Punch Binary File.
Some data processing applications may be small enough to permit the standing file to be

kept on cards. Here the requirement after an updating run is to punch out

-C21..15-I ·"

Now v/e can g o .

DPCS2

tbe file in the most contact form (binary) with the ability to read it in again to exactly
the same place (and fully checked) on the next updating run. A routine has been written
to do this which will be published shortly.

3. Character Compress and Expand.
Characters of 6 binary digits are wasteful for numeric information and tighter packing

may be obtained if characters are compressed to four bit form. Subroutines for 6 to 4
compression and k to 6 expansion are in preparation. The techniques are well established
and the subroutines will be published as soon as possible.

-021..16-

DPCS2

Armroix 2.
This appendix contains instructions for use (together with flow diagrams and coding) for

some of the subroutines which are in course of publication for character manipulation and
conversion· Some routines have bean published and a list of routines is given below:

1* P23E and. D27E are a pair of general fetch convert and store routines· Pull details
are available in the relevant reports IIS t 257 and NS t 256·

2· 10 character Binary to BOD conversion (DECIMAL) N < 2^. 1C?·
3· 10 character BCD to Binary conversion (DECIMAL) H < 231.
4. Double entry 5 character Binary to BCD or BCD to binary N < 103.
5· General integer division·
6· 10 character fetch from character store.
7· Character select or reject in character stare·
8. Insert zeros or space symbols in character store.
9. Double entry DECIMAL character add-subtract.

a
10. Binary to 4 bit BCD and 4 bit BCD to binary conversions (N <, 10). These are in

preparation as separate routines or as a combined double entry routine·
11· Binary pence to 4 bit £· s. d.
12. Double entry 10 character binary to BCD or the reverse which covers the maximum

range of up to 231. This is a combined version of (2) and (3) with the range of (2)
extended.

15. Double entry binary pence to £. s. d. and the reverse for amounts less than £100
using single character pence.

16. Universal 10 character Add-Subtract. Any units may be added provided integral
multipliers exist between adjacent characters.

17. Universal double entry conversion of 5 characters from BCD to binary and the
reverse.

18. Six to four bit compression and four to six bit expansion.
19* Read and ftmch binary file.

-C21.18-

D0ECS2

-021).17-
APPENDIX 1,

Card Input Code, 6-Bit
Eouivalent
(Decimal),

6-Bit Ecud.valent
TBinaiy).

Associated
Symbol.

Card Output
Code.

YX08 other (Most Sis, on right) YX08 other
..0.. 0 0000 00 0 • *0 · ·
....1 1 1000 00 1 • * * *1
....2 2 0100 00 2 • · · *2
• · · · 3 3 1100 00 3 • · · · 3
• · · #4 4 0010 00 4 • · · *4
• ·* · · 3 5 1010 00 5 • · · · 5
• · · «6 6 0110 00 6 • · * #6
• · · .7 7 1110 00 7 • · · #7
•. .8, 8 0001 00 8 . · .8.
....9 9 1001 00 9 • * · ·9
...82 10 0101 00 10 ...82
...83 11 1101 00 11 ...83
• · .84 12 0011 00 12 ...84
...85 13 1011 00 13 ...85
.. .86 14 0111 00 Free .. .86
Blank 15 1111 00 Space Blank
Y.... 16 0000 10 Plus Y....
Y...1 17 1000 10 A Y...1
Y...2 18 0100 10 B Y...2
Y...3 19 1100 10 c Y...3
Y...4 20 0010 10 D Y...4
Y...5 21 1010 10 E Y...5Y...6 22 0110 10 F Y...6
Y...7 23 1110 10 G Y...7
Y...8 24 0001 10 H Y...8
Y...9 25 1001 10 I Y...9
Y. .82 26 0101 10 Free Y. .82
Y. .83 27 1101 10 Free Y..83
Y. .84 28 0011 10 Free Y. .84
Y..85 29 1011 10 Free Y. .85
Y..86 30 0111 10 Free Y..86
Y..87 31 1111 10 Free Y. .87
.X... 32 0000 01 Minus .X...
.X..1 33 1000 01 J ' .X..1
.X . .2 34 0100 01 K •X..2
.X..3 35 1100 01 L •X..3
.X..4 36 0010 01 M .X. .4
.X..5 37 1010 01 N .X..5
.X..6 38 0110 01 0 • .X..6
.X . .7 39 1110 01 P .X..7
•X.8. 40 0001 01 Q •X.8.
.X. . 9 41 1001 01 R •A · * 9
.X.82 42 0101 01 Free .X.82
.X.83 43 1101 01 Free .X.83
.X.84 44 0011 01 Free .X.84
•X.85 45 1011 01 Free .X.85
.X.86 46 0111 01 Free .X.86
.X.87 47' 1111 01 Free .X.87
No Code 48 0000 11 Free • *0 · ·
..0.1 49 1000 11 Free . .0 .1
..0.2 50 0100 11 S . .0 .2
..0.3 51 1100 11 T ..0.3
• .0,4 52 0010 11 U • .0*4
..0.5 53 1010 11 V ..0.5
..0.6 54 0110 11 V/ • *o«6
..0.7 55 1110 11 X ..0.7
..08. 56 0001 11 Y ..08.
..0.9 57 1001 11 Z ..0.9
..082 58 0101 11 Free ..082
..083 59 1101 11 Free ..083
..084 60 0011 11 Free ..084
. .085 61 1011 11 Free ..085
..086 62 0111 11 Free ' ..086
..087 63 1111 11 Space/lgnore Blank

DPCS2

-021.19“
DEJCE SUBROUTINE.

TEN CHARACTER FETCH.
Description.

Fetches and left justifies (to P^) up to ten characters from any specified character
position in an 80 col. character store.
J&ta

(a) Number of characters (n) required n $ 10.
(b) Character position of least significant character.

The number of characters is specified as n P^7 in TS 16. The least significant
character position is specified as TPg^ + u vdiere T and u are the tens and units digits
of the character position.

Example:
Fetch five characters at Character position 73

TS 16 contains y
TS 14 contains 1&2\ + ^ 7

/ Result.
Up to ten characters in DS 21 with the least significant character at P^ position in

212. Character positions unoccupied are clear.
Example: — , : i ; !

C.p. 80 | 79 i 78 ; 77 i 76 i

75 . L—7 5 :...1 ... i.. Ί?......1..71.......i....
* I
• «
| . . . * ·............ j 47 146 i
.... n... . « . . . · · · ···» · · · · - · · 1 ·····

45 j 44 I 43 j 43 (9) I 41 (3)
.a ·· ..· ...t·*· ·«.··· ..···· ·· ···· ··.»♦··· .a·^. .a .·····..·..··· Λ·^ ·β·.

40 (4) j 39 (2) ' 38 (1) j 37 (7) ; 36 j
..........i...........!........ J _ J......... ί..
ί ·To fetch 6 characters from L.S. position 42.

Result in 21„ y

P3 I• I I I — " t i l 1 . > ■ "" . >: 9 : 3 I 4 : 2 ; 1 7 : zero · zero . zero . zero : j

42 41 40 39 38 | 37
1

4----------------212------------ > · 4------------------21^ ------------------— »
Parameters.

For characters in Delay LEES A insert A sis source number in 2Q
Stores Used.

13 14 15 16 20 21 172 182

Contents at Ehtry.
Link TP21+ UP1? nP1? - - -

Contents at Exit.
- - - - - Result -

DECS2

Time.
The time depends on the number of characters required and the position of the least

significant character.
For u = 0 Time = 5 msec. (any value of n).
For n ̂ u Time = (5 + (lO-u))msec.
For n ,> u Time = 16 msec.

V

-C21.20-

DECS2

DMJCB SUBEMTOME.
CHARACTER SELECT OR REJECT.

Description.
This subroutine modifies the 80 col. character store, replacing continuous groups of

characters by zeros. The first n (^ 5) characters in either or both words of a word
pair may be selected (i.e. retained) or rejected (i.e. replaced by zeros).

Example:
f * l ». '· '· , % |."· « 7

C.p. 50 : k9 i 48
7 , . , · . : : Ι " f ■: ···■ ■ :-1-.-7- -------------i-*—1------*----r-·— . .,-*7
· . · : ■ . · · ' . « ; 42 ; 41 :\v

C.P. = Character Position.
Suppose it is required to replace character positions 47, 46, 45 and 44 by zeros. This

requirement is specified to the subroutine as follows:
"In the word pair located an Character Position 50 retain (the first) three characters

in the even word and reject (the first) two characters in the odd word".
The character position defining the word pair must always be one of 80, 70, 60, 50, 40,

30, 20, 10.

It is specified parametrioally as:
(character position) χ p ^ Tg ^

10 18

e.g. 50 is specified as 5 ^ g
30 is specified as 3^ g·

The number of characters and whether these are to be rejected or selected is specified
as a codeword in 20^ for the even word and in 20^ for the odd word.
Retain the first n characters’ is specified as:

■*17 * 12P26
fReject the first n characters' is specified as:

■*17 * (0BZ6>
For the example we require:

3P1? + 12P26 in DS202
and 2P17 + in DS2Cj.

Subroutine Input.
1# Parameter specifying word pair as (Character Position) χ p ^ 14, The

10 1
Character Pasition must be a multiple of ten.

2« Codewords in 202 ^ specifying the number of characters to be selected or rejected
in the even and odd words respectively.

In DS202 Πι P1? + K P26
In DS202 n2 P17 + K Pg6

K = 12 to select characters
K = 0 to reject characters

3. link in TS 13.

-C21.21-

DFCS2

Stores Used.
13 1t 15 202>3 212>3

Contents at Ehtry.
CPτ.ΐην (^)xP^ g Codewords

Contents at Exit.

Entry»

226*
Occupies.

2o - 23 25 - 30.
Time.

6 m sec.
NOTES:
1. The routine assumes that the character store is m.o. 0 - 15 °f *■ 33BLAX DUE.
2· The character store can be in any EL A by insertion of A as SOURCE number in 2̂ .
3* The modified character store can be in the same minor cycles of any delay line B

by insertion of (21 - A) and (B + 11) as S and D numbers in 2,,̂ .
4* If the final character store (i.e. after modification) is required in minor cycles

W* to W' + 15 change the wait number of 2gy to (31 + V/·)

-C21.22-

DECS2

7 DECJCE SUBROUTINE.
INSERT SPACE SYIIBOIS OR ZEROS.

Description.
This subroutine modifies the character store by eliminating continuous groups of

characters, replacing then either by zeros or by space symbols. The first n (^ 5)
characters in either or both words of a word pair may be specified. To indicate whether the
eliminated characters are replaced by zeros or space symbols a "spaces format" parameter is
used.

Code. Meaning.
0 0 Characters in both words replaced try zeros.
1 0 Characters in even word replaced by spaces.

Characters in odd word replaced by zeros.
0 1 Characters in even word replaced by zeros.

Characters in odd word replaced by spaces.
1 1 Characters in both words replaced by spaces.

Example: ■------------:---- :---1-------, -------- r
; ! · spaces spaces j

C.P. 50 : 49 : 48 : 47 · 46 |
---------- μ ------ r i------μ------- H ------ ^zeros ; zeros . zeros · zeros ·

45 : Vi- I 43 42 ; 41. j! i ' '--------ί--
C.P. = Character Position.

Suppose it is required to replace characters 47 and 46 by space symbols and replace
45, 44, 43, and 42 by zeros.

The requirement is specified to the subroutine as follows:
"In the word pair located on character position 50 select (i.e. retain) the first

3 characters in the evenword and eliminate the first 4 characters in the odd word. Replace
rejected characters in the even word by spaces and in the odd word by zeros".

In TS 14 (C^ ^ t-e- ^ 3ΐ^ ° η °f TOr3 x P18 i.e. 5P,8

DS 202 3P17 + P26

2°3

TS 16 Space Format in P^ Έ i.e. P^ in this example.

The codewords in DS 20 specify the number of characters and whether these are to be
retained or rejected

i.e. DS 202 is n^-, + K for even word
20j is n^ 7 + K P2g for odd word

K = 1 means Keep.
K = 0 means replace.

Stores Used.
13 14 15 16 202 203 192 193 21g 21?

Contents at Shtry,
link (~)xP.o “ Space Codewords

1 Format
Contents at Exit.

-021.23-

DFCS2

Occupies.

20 - 31 30 - 1 6*
Entry.

224*

-C21.24-

DFCS2

■3 CHARACTER CONVERSION.
Description.

A double entry subroutine which converts a 5 6-bit binary coded, decimal integer to
binary and vice versa.
Input. Entry 1« A 6-bit binary coded decimal integer N(<; 103) located at Fg position

in 21^ as shown.

P2 P8 P1A P20 P26

! 10° ; 101 j 102 : 103 ; 1(/*· :
• » ·_________·_________I________ — L.

213
Output. Entry 1. N x P̂ in 21
Input. Entry 2. A binary integer N(< 103) as NP^ in 21̂ .
Output. Entry 2. A 5 digit 6-bit BOD integer N in 21 g located at Pg position.

Π 10° i ^ i io2 i ίο3 ί ic/*" Γ
) j ;________; ;_________s__________u

P2 P8 P14 P20 P26

Time.
3 milliseconds at each entry.

Occupies.

20 - 3 5 - 15 22 26 - 31.
Stores Used.

13 15 16 21 g 21^
Contents at Entry.

Link - - - N (B.C.D) Entry 1.
Contents at Exit. ►

lank - ~ NP^ (binary) j
Stores Used.

13 14 15 16 21 g 21^
Contents at Entry. }

Link - - - NPj (binary) Entry 2.
Contents at Exit.

lank - - - N(BCD)
The subroutines employ multiplier divider techniques and both subroutines will fail if

operated on single shots.

DBUS2

-C21.25-

EEUCE SUBROUTINE.

TOT CHARACTER ADD/SUBTRAQT.
Description.

A double entry subroutine to add or subtract ten digit positive decimal numbers in
6-bit binary coded decimal notation. Negative differences are given as the modulus with
a sign in the most significant character location.
Data.

Character Add AUGEND A ADDEND B
Character Subtract MINUEND A SUBTRAHEND B.
A and B must be 6 109 expressed as ten digit 6-bit BCD integers with the least

significant digit of the least significant character at Pg position.
Result.

Character Add SUM A + B DDTFERSTCE A - B /a/ 2- /B/
-(B - A) /B/ > /A/

If A + B > 109 the result will be out of ten character length. Within the ten
sharaoters the result will be (A+B)- 109 with a digit at P30 position of the more ^
significant word.

Examples: ________________ ______________________________
1. A I 3 I 2 ! 5 j 7 I 9 ! 1 I 3 I 6 j 0 j 0 j

■ % *J0
-1 | i i · Π [i i j |

3 i 5 j 7 j 9 i 6 I A il 2 j 5 I 7 I ο I o i
^ 2 *30

“ I · | j Π ! I * i fA+B I 8 ί 9 : 4 : 4 ! 4 : 4 | 8 : 3 ! ΐ ί 0 ;
Λ
"i------ ί-----·-----i-----:----- !----- 1-----:-----1---- »----- Γ -

2. A j 7 : 3 : 2 : 1 ! 4 : 6 : 5 ί 7 ! 9 ί 9 !
P2

Π I r— i j n i j i i i
B s 2 ; 1 ; 3 : 2 ; 5 « 8 : 7 1 4 : 3 : 3 ij > * i » I! ♦ . __ » > - * -*-

A+B j 9 j 4 j 5 j 3 j 9 j 4 I 3 | 2 j 3 j 3 |lU,------:-----1-----s-----1----- U-----:-----:-----ί---- :----- te— *
2 30 .

3. A Π 5 I 7 j 3 j 2 ! 1 || 7 j 9 · 9 | 0 j 0 j
• _____ί_____ :_____i_____ ·■ ■_____ · ■ « ' ■»

" i : i-----1 Π I ! I I i
B ; 2 i 1 ! 7 j 4 ! 3 S 1 | 2 i o j o j o I

A-B Π 3 I 6 ! 6 i 7 I 7 || 5 I 7 j 9 j 0 I 0 j
Is i i 1 i II_____|_____S____ I_____i----- i—

BFCS2

-C21.26-

DEUCE SUBROUTINE.

4. Α Π 1 i 2 « 3 5 4 S 5 - δ I 7 j 0 i 0 | Ο ΓL__ I__ I------1__ »______ ;__ S__ \----- 1------- lJ

B ΓΤ 5 i 4 i 7 S 2 j 9 j 9 i 8 j | j Π

-(B-*) ^ j 2 j » j 8 j 3 i 3 \ 1 j j j 1jI..·... -I ■■ I »-----i_____ » j » . » - r«— 1
P29

NOTE:

The top character includes P29 as -ve sign.
Tine.

Character Add 1½ milliseconds.
Character Subtract 3 milliseconds /a/ * /B/

6 milliseccnds /&/ <■ /B/
Stores Used.

J U «► 15 K 202,3 2 ,2,3

Contents at Ihtrr.
Link — - - B A

Contents at Exit.
- - - B (add) A+B (add)

A-if* (subtract) A—B (subtract)
or -(B-A) "

* If /A/ £ /B/, 20_ , contains B at the exit from SUBTRACT.
If /a/ < /Β/, 20g 2 contains A-B as 10's complement with Ejq ^

Failures.
NONE.
If A+B > 10? the result will be out of ten character length. This may be detected

outside the routine by

p3o -
213 - 15
25 .-28
/ \

/ 1 \
out of within
length length.

-C21.27-

DBCS2

UNIVERSAL 5 CHARACTER CONVERSION FROM BETAKT TO BSD OH BSD TO BINARY.
Description»

A double entry subroutine which converts 5 6-bit binary coded characters to binary and
vice versa· Any system of units may be used provided integral multipliers exist between
successive characters.
input. Entry 1. BOD to Binary. A five character number N located with the least

significant character at P^ position in 21̂ .

i e f d I ° ! b I a I
P2 P8 P14 P20 P26

Output. Entry 1. NP^ in 21̂ ,.
Input. Entry 2. A binary integer NP^ in 21^.
Output. Entry 2. A five character 6-bit number N located at Pg position in 21 g.

i e ί d i ° Η* I *~1
Time· Ihtry 1» 2½ msec.

Shtry 2« 3½ msec.
Occupies.

me. 4> 6, 8-31.
Stores Used.

13 14 15 16 192 0*rtry 2) 21£ 21^ 17Q_3
. Contents at Entry.

Link - FILLERS N CONSTANTS .
Contents at Exit.

- - - - FILLERS N N CONSTANTS.
(entry 2) (entry 1)

Entry 1. me. 18.
Bitry 2. me. 17.

Parameters.
For either entry four constants must be provided in QS 17. These depend on the type

of conversion taking place· A table of constants for several systems of units is attached.
For entry 2 only a set of FILLERS must be provided in 19g. These are shown in the

table of constants.

*021.28-
DHJOE SUBROUTINE.

1o
POVOI

§
CO
ΓΟ

INPUT. OUTRJT. PARAIFTERS. 5ch LE FT 10ch LO FT DIVISOR INTEGER DIV ·
Binary x 10° 101 102 10* 104 CONSTANTS. 2δ. 104 0,0,17,19 < 103 < 231 214.105 Type 2.

2^.103 0,0,0,29,3
218.102 0,0,0,0,25
2^.101 0,0,0,0,0,5

(0 21, 1, 3) 0 0 0,16,26,16,1

FILLERS 5ItP-+ 54P„+ 5 4 ^ + 54P«0
(12,27,22,15,27,0)

< 231 216.24000Binary Pence x P1* a S 10/- £10° £101. CONSTANTS. 2^.2400 0,0, 22,4 < 240.102 Type 2.
212. 240 0,0,0,30
218.120 0,0,0,0,30
224. 12 0,0,0,0,0,6

(0 14 23) 0 0 0 0 28 14 1

FILLERS 52P_,+ 54P„+ 62P.. + 54P„Q
(8 27 22 1 5 27 0)

216 2400Binary Pence x P1 a Blank s 10/- £10. CONST At ITS. 2 . 240 0.0.15 < 2400 < 10 .240 Type 1.
212.120 0,0,0,15
218. 12 0,0,0,0,3
230. 0,0,0,0,0,0,1

(0 11 2) (0 0 7 28 4 7) 0 0 0 0, 22, 4

FILTERS 52P^+ 63PQ+ 54P ,+ 62P„Q
(8 31 23 13 31 0) f

216.2400Binary Pence x P1 a 6a s 10/- £10° CONSTANTS. 26. 240 0.0.15 < 2400 < 10 .240 Type 1.
212.120 0,0,0,15
218. 12 0,0,0,0,3
230. 0 0,0,0,0, 0,1

(0 11 2) (0 0 7 28 4 7) (0 0 0 0 22 4)

FILLERS 58P9+ 62Pft+ 54P,,+ 62P^
(20 27 23 13 31)

-021.30-
INHJT. OUTHJT. PARAMETER. 5ch LIMIT. 10ch LIMIT. DIVISOR INTEGER DIV.

^ Binary Pence x P̂
Coro

d s £10° i£10 1 2£10 CONSTANTS 26. 24000 0,0,28,14,1 240000 231 231. 240000 Type 2.
212. 2400 0,0,0,12,9
218. 240 0,0,0,0,28,1
224. 12 0,0,0,0,0,6

(0 12 10 7) (0 0 0 0,19,26,1)

PINCERS 52P2+ 44Pg+ 54P14+ 54P20

(8 19 21 13 27 0)

Binary feet x P̂ ft. yd. ■̂ ch ch f CONSTANTS 26. 660=0,8,9,1 < 5280 5280 x 105 216 5280 Type 1 .
212. 66=0,0,8,8
218. 33 0,0,0,8,8

(0,5,5) (0 0 9 17 23 15) (0 0 0 0 10 10)

224. 3 0,0,0,0,16,1

FILLERS 6' V 53¾. 62P1t. 5 4 ¾

(26 23 22 15 27 0)

Binary feet x P̂ ft. yd. Blank ch f CONSTANTS 26. 660 0,8,9,1 < 5280 5280 x 105 216. 5280 Type 1 .
212. 66 0,0,8,8
224. 3 0,0,0,0,16,1
224. 3 0,0,0,0,16,1

(0 5 5) (0 0 9 1 7 23 15) (0 0 0 0 10 10)

FILLERS S1P2+ 42Pg+ 63P14. 5 ¾

(26 11 29 15 27 0)

Binary feet x P̂ ft. 10®yd 101ycl 102yd 103yd CONSTANTS 26. 3000 0,16,27,5 < 3.104 5280.105 216. 5280 Type 1 .
212. 300 0,0,16,5,1 (16 9 29) (0 0 9 17 23 15) 0 0 0 0 10 10
218. 30 0,0,0,16,7 (For MILES in top (For MILES in top
224. 3 0,0,0,0,16,1 5 characters) 5 characters)

FILLERS 61P2. 54¾. 5 4 ¾ . 5 4 ¾

(26 27 22 13 27 0)

INPUT. OUTPUT. PARAMETER. 5ch LIMIT· 10ch LIMIT. DIVISOR. INTEGER LIV.

§ Binary yd x P.
ω 1 ro

Blank 10^yd I01yd l02yd lO^yd CONSTANTS 26. 103 0,16,30,1
212.102 0,0,16,12
218.101 0,0,0,16,2
2^-.10° 0,0,0,0,16

1760
(0 23 1)

< 105. 1760
(0 0 3,27,7,5)

217.1760
(0 0 0 0 28 6)

Type 1.

FILTERS 5̂ p 2+ % P 8+ % P 14+ 5 ¾

(12 27 22 13 27 0)

Binary inches x P̂ in. ft. yd. Blank ch. CONSTANTS 26. 792 0,16,17,1
218. 36 0,0,0,0,9
218. 36 0,0,0,0,9
224. 12 0,0,0,0,0,6

< 7920
(16 23 7)

15840.104
(0,16,31,1 ,23,4)

215.7920
(0 0 0 16,23,7)

Type 1.

FILLERS 52P2. 61Ps. 6 ¾

(8 23 31 28 31 0)

Binary inches x P̂ in. ft. yd. ^eh. ch. CONSTANTS 26. 792 0,16,17 ,1
212.396 0,0,16,17,1
218. 36 0,0,0,0,9
224. 12 0,0,0,0,0,6

< 7920
(16 23 7)

< 15840.104
(0,16,31,1,23,4)

215.7920
(0 0 0 16 23 7)

Type 1.

FILLERS 52P2* 8lPg+ 53P14. 82PJO
(8 23 15 13 31 0)

Binaiy LBWT x P̂ EB. QTR. COT. 101COT TONS CONSTANTS 26.2240 0,0,12,4
212.1120 0,0,0,1 2*4
218. 112 0,0/),0,28
224. 28 0,0/),0,0,14

222/) x 10
(0 28 2l)

251
(958698 TONS
1 COT 4 LB).

216. 222/0
(0 0 0 0 24 11

Type 2.
1)

FILLERS 3iP2. 60Pg+ 54P14+ 62?^
(8 18 23 13 31 0)

-l
>£
US
O-

D
K3S2

INPUT.

Binary LB. x P̂ LB

OUTPUT.

STOKE- QTR COT 101COT CONSTANTS

PARAMETER.

2¾ 1120 0 ,0 ,6 ,2

212. 112 0 ,0 ,0 ,1 4
218. 28 0 ,0 ,0 ,0 ,7

22¾ 14 0 ,0 ,0 ,0 ,0 ,7

5ch LIMIT.

2240
(0 ,6 ,2)

lOch LIMIT.

2240.105

(0 0 30 19 21 6)

DIVISOR.

216 2240

(0 0 0 0 1 2 4)

INTEGER ΠΠΓ
Type 1.

FILLERS 50P2+ 62P8+ 60P14+ 54^20

(4 19 6 15 27 0)

216. 2240

(0 0 0 0 1 2 4)
Binary LBOT x P̂ 10°LB 101LB 102LB 103LB Blank CONSTANTS 26. 104 0 ,0 ,1 7 ,1 9

212.103 0 ,0 ,0 ,2 9 ,3
218.102 0 ,0 ,0 ,0 ,2 5
224.1 0 1 0 ,0 ,0 ,0 ,0 ,5

2240
(0 6 2)

2240.105

(0 0 30 19 21 6)

Type 1.

FILLERS 5AP2+ 54Pg+ 54P14+ 54P20

(12 27 22 13 27 0)

Binary LBOT P̂ Blank 10°LB 101LB 102LB 103LB CONSTANTS 26 . 103 0 ,16 ,30 ,1
212.102 0, 0 , 16 ,12
218.1 0 1 0, 0 , 0, 16 ,2
224. 10° 0, 0, 0, 0,16

2240
(0 6 2)

22240. 105
(0 0 30 19 21 6)

216. 2240

(0 0 0 0 12 4)

Type 1.

FILERS 5W>2+ 54Pg+ 5 ^ 14+ 54P20

(12 27 22 13 27 0)

Binary COT x P̂ CWT 101COT 10°T 101T 10¾ CONSTANTS 26. 2000 0,0,29>3
212. 200 0 ,0 ,0 ,2 5
218. 20 0 ,0 ,0 ,0 ,5
224. 10 0 ,0 ,0 ,0 ,0 ,5

20 x 103

(e 17 19)
20.108 216.(2 0 .1 0 3)
(0 0 5 11 19 27 1)(0 0 0 0 2 , 7 , 1)

Type 2 .

FTTJ.TOR ί* Ρ 2+ 62P8+ 54P14+5 ^ 20

(12 27 23 13 27 0)

-C
21.32-

-C21.33-
INPUT.

Binary Seconds
S . OUTHJT. PARAI.IETHR.
M sec. 101sec min. 101min HRS COITSTiCITS. 26. 3600 0,0.1.7

5ch LEHET.
36000

lOch LDEET. DIVISOR.
3600.104 210 36000

INTEGER DIV.
Type 1.

,0r 212. 600 0,0,0,11,2degrees ^
21 . 60 0,0,0,0,15

(0 5 3 1) (0 8 20 10 2 1) (0 0 0 5,3,1)

224. 10 0,0,0,0,0,5
FILLERS. 5WU+ 58PC+ 5WP,.+ SSP^q

(12 7 23 13 29 0)

NOTE: This is
probably as far
as practical
problems are
likely to go.
The actual maximum
is 2Γ* but Type
2 integer division
will be required.

231
215 36000
(0 0 0 0,5,3,1) Type 2.

-021.34-
DEUCE SUBROUTINE.

UNIVERSAL 10 CHARACTER ADD/SOBERACT.
Description.

Λ subroutine to add or subtract ten characters in any set of units provided integral
multipliers exist from one character to the next.
Input.

Ten character numbers A and B. A is placed in DS 21 at P2 position in 21 g and B is
placed in DS 20 at ?2 position.
Result.

A + B in 2122 for ADD.
A - B in 2122 for SUBTRACT (if A έ B)

-(B - A) in 21 „ , for SUBTRACT (if B > A). In this cane a sign digit is inserted in
the most significant character (P^ in 21^).

If the result is out of ten character length a P30 digit will be present in 21y

DPCS2

Examples: * · · » . · .____; ; · 1
A 5 i 7 j 6 I 3 : 1 :

% % 2 1 1 i 3 : o ! 0

B 4
\--- ;--- —» . · *1 : 2 1 • : 5 i 9 ; • · VO C

D

t
9 i • 1 I

A+B 9 : 8 ! 8 j • * · 8 i 0 ! • ·2 : 0 : • ·
•

3 i
. . .. J 2 I

A 7 1 3 : 9 5 5 j 4 j 7 ! 2 i • »
1

1 I 9

B 1 2 ; 1 ίt 1 3 ! 1 i 4 ί 5 · • « 1 I !1

A-B 6 1 : 8 : * · · 2 ί 3 i » · 3 ! 7 ! 9 i 8 :

d 0 1 s £10 £10 £102 £103 £104 £103 £106 £107
A 5 15 · 1 ; 3 i 4 ·1 · 7 ! 2 i 1 ! 9 i____L

0

B 9 2 I 3 s 4
• ·
: 1 : » » 2 ! 1 i1 · 3 : • 2 s • 0

A+B 2 18 ! 4 j 7 i 5 : 9 : 3 !
1

4 i
1

1 *- - » 1 I

ft yd Blank ch f m m m m
A 1 10 · 0 | 4 ; 3 j 1 j 2 I 1 | 3 I

B 1 20 : 0 ί < · 5 ! 3 i 4 i 7 J 1 I 2 i •

A+B 2 8 ! ο ! • 1 0 i 7 II ; 5 : 9 j : 1
2 ί » 5 ! ___Li » ·

— « - -

Time.
ADD 3 m.s.
SUBTRACT 3 m»s· A £ B

6 m.s. B 7 A.
Occupies.

m.c. 0-31.

Entry.
Add n.c. 30
Subtract m.c. 7

DB0S2

Stores Used.

13 14 15 i92,3 2°2,3 Z123
Contents at Entry.

Link _ FILLERS B A

Contents at Exit.
_ _ _ _ FILLERS B (add) A+B (add)

A-B K(Subtract) A-B (subtract)
or -(E-Λ) "

* If /A/ £ /B/, 2025 contains B on exit.
If /B/ ^ ./A/, 20^ contains A-B as 10's cocrplement with Ρ^0 ^ ,2·

NOTES:
The fillers are constants which control the carries from one unit to the next. Denoting

a ten character number asN = a b c d e f g h j k
If m1 k = j c = d

1¾ j = h my d = c
m ^ h s g mg c = b
m ^ g = f n^b = a
m_ f = e m.na = next unit, (for out of length detection)5 |v

Then the fillers required are:
192 (6¾. - m1)P2 + (64- m2)Pg + (6 4 - + (64- \) P20 + (6̂ “ m5^P26

193 27 P1 + V 54 P12 + »■ P18 + Ά P24*
This routine assumes that mg to m^Q are all 10. Another slower routine is available

for units other than with radix 10 in the upper five characters.
Failures. NONE.

If the result is out of ten character length P^will be present in 21^. This may be
detected outside the routine by,

213 - 14
2 4 - 1 4
2 4 - 2 7

/ \withm out of
length length.

-C21.35-

22

LECTURE 22
INTERPRETIVE ROUTINES.

22.1 WHAT IS AN INTERPRETIVE ROUTINE?

Despite the creation of comprehensive libraries of subroutines and programmes, it is
still necessaxy to possess a considerable knowledge of the DEUCE order code to write a
programme to calculate results for a particular problem. The time taken to acquire this
knowledge is often the limiting factor in deciding whether to put a problem onto DEUCE for
solution.

To offset this disadvantage., completely new order codes have been devised incorporating
powerful instructions which reduce considerably the actual number of instructions needed to
evaluate the results of any problem. These order codes are completely different from the DEUCE
machine order code, and so the interpretive routine is required to convert from one code to the
other.

The interpretive routine therefore does the job of converting from a relatively simple
order code, which can be learnt in a matter of days, into the far more complex machine code, but
at the expense of time. As the programmer is relieved of a lot of the hard work, the
interpretive routine has to do this for him, and therefore it would be slower than a
conventional DEUCE programme. This is not of any real significance for a "one-off" job as the
increased calculation time may not be as great as the programme testing time for a conventional
programme, but it should be considered before an interpretive scheme is used for "many-off" jobs.

Let us now consider the various schemes that exist in the DEUCE Library.
22.2 GENERAL INTERPRETIVE PROGRAMME (G.I.P.).

Instructions to this programme are of the 'three address plus function' type and the
operation is briefly as follows.

The General Interpretive Programme is fed to the machine and begins by reading in and
storing a number (< 63) of self contained programmes which are referred to as bricks. The
programmer has previously decided which bricks he will need to do his job, and he chooses these
from the libraxy. G.I.P. then reads in its own instructions which consist of 4 parts
"a, b, c, r". These instructions are, in general, interpreted as "take brick number r of those
which haye been read in and stored, provide it with parameters a, b and c and obey it". 16
special values of r are set aside for instruction modification, discrimination and other
housekeeping operations, so that all the requirements of a full machine order code are available.

The greatest use of G.I.P. has been for linear algebra calculations and a vast libraxy of
bricks has been built for this purpose. The parts a, b and 0 of the instruction then usually
refer to tracks on the magnetic drum, a matrix being specified by the track number at which it
begins to be stored. It is important to note that the instructions do not need to make
reference to the size of the matrices, the dimensions being automatically stored away with a
matrix. As a simple example, to add two matrices together, one would need to read them in, add
them and punch out the sum. Thus G.I.P· would be followed by three bricks: "Read Matrix",
"Add Matrix", "Punch Matrix" numbered from 1 to 3 respectively. The interpretive programme
would then consist of 4 instructions.

-22.01-

DPCS 2

a b c r
0 0 0 1 Obey brick No. 1 (i.e. read a matrix) and store it in track 0

onwards on the magnetic drum. The number in the c position
indicates where the matrix is to be stored and in this
instruction a and b have no use.

0 0 110 1 Read a matrix into track 110 onwards.
0 110 110 2 Obey brick No. 2 (add matrices) providing it with parameters 0,

110 and 110. The add matrix brick will interpret this as a
request to add the matrix at track 0 onwards to that at track
110 onwards and put the result at track 110 onwards, overwriting
the one originally there.

110 0 0 3 Obey brick No. 3 (i.e. Punch Matrix) and the matrix to be
punched is to be found at track 110 onwards.

This programme would be valid for adding any matrices which occupied less than 110 tracks,
i.e. as long as the matrices being added have less than 3516 elements each.

A particular feature of all the bricks made for use with G.I.P. is the elaborate checks on
arithmetical accuracy, end reliability of the operator or programmer. Thus any matrix stored
on the drum has the sum of all its elements stored with it, and whenever reference is made to a
matrix, the sum is checked. Thus the above programme would have a characteristic failure if the
data being read in has some inconsistency, if the matrices are incompatible, or if the sum of
a matrix written on the drum does not agree with the sum of the elements. (The usual cause of
the latter is a programmer unwittingly overwriting part of matrix). Whenever possible all
arithmetical operations are checked by a separate method.

Of the special values of r, 5 are for various discriminations, 8 are for instruction
modification, and the remainder provide facilities for reading in new bricks, and new
instructions.

The scheme has proved of such value in dealing with a wide range of problems that several
DEUCES are using it for well over 50$ of all production time. Although it has been so
extensively used for linear algebra, it has also been widely used for other problems, including
the solution of differential equations, (using a brick for RungeKutta), harmonic analysis
(using a brick for sine and cosine), curve fitting and many other applications which have no
apparent connection with linear algebra.

The interpretation time for G.I.P. is of the order of 1 second per G.I.P. instruction,
which is insignificant when dealing with large matrices or arrays. However, if the matrices
are small this can be a major part of the total calculating time. In this case, a variation of
G.I.P. can often be used. This variation, known as the Special Interpretive Programme or S.I.P.
reduces the interpretation time to .4 ~ «5 second, but loses a little in flexibility.
22.3 TABULAR INTERPRETIVE PROGRAMME (T.I.P.).

This is the simplest imaginable interpretive scheme in which the user looks upon DEUCE as
a vast sheet of computing paper ruled into columns, with up to 30 rows ruled across the sheet.
Orders to the machine then consist of instructions to perform an operation on all the numbers in
one or two columns and write the results in another column.

-22.02-

DPCS 2

Thus the instruction
7 18 23 2

has the significance "Add the numbers in column 7 to the corresponding numbers in column 18
and write the answers in column 23, ehe number 2 being interpreted as "add".

Similarly the instruction
101 0 127 8

has the significance "Take the logarithms of the number in column 101, and list the results in
the corresponding rows of column 127". Hie 8 here is interpreted as "logarithm", and the 0
has no significance.

A number of functions are available including read, print, add, subtract, multiply, divide,
—1 —1 - sin, cos, sin , cos , log, exp. Facilities are also available for reading the ordinates of a

graph, and for subsequently interpolating in it. It is also possible to feed constants to the
machine and to operate with a constant on a column of figures, e.g. to multiply all the numbers
in a column by a constant. The operations have been kept to a reasonable minimum in order to
encourage scientists and engineers who would not otherwise trouble to learn to programme a
machine, to make use of the facilities. For those with problems in a special field however, it
is possible to fit special purpose functions into the scheme. It is possible to learn all that
need be known about this kind of programming in an hour. As an example it is possible·to
evaluate the expression

n b^t
a^ e cos (c^t + d^)

i=1
for any n, for up to 32 values of t, and to print out the results at the end, all in 12
instructions.

This type of operation makes it particularly convenient to calculate functions of say, 32
values of a variable in parallel, and this is one of the chief uses of the scheme. Since up to
32 floating arithmetic operations can be carried out for each interpretation of an instruction,
the interpretation time is not of paramount importance, and it averages in fact about .8 secs
per instruction.

In addition to the arithmetic operations described, the scheme includes facilities for
modification of instructions, discriminations, jumps, etc. so that all the requirements of a
full machine order code are met.
22.4 DEUCE ALPHACODE.

This scheme was designed to the following specifloa'tion:
(i) A comprehensive order code is particularly suitable for scientific and engineering

use. For instance the functions "Solve Differential Equations", "Sum Power Series", "Interpolate
in Graphical Data" and "Integrate by Simpsons Rule" are available in the order code among the
64 possible orders. These orders include all arithmetical, trigonometric and hyperbolic
functions, and a wide range of other functions.

(ii) The scheme is simple to learn to programme, and it is possible to train someone to
use it in the order of one day. It does not call for any knowledge of orthodox programming,
punched cards, scaling or binary arithmetic.

-2 2 .0 3 -

DPCS 2

(iii) All instructions are written and presented to the machine in English, avoiding the
jargon so frequently associated with autocodes and not even using a numerical notation for the
various functions.

(iv) It is possible to insert new instructions at will, without the interference caused
in renumbering of instructions in a machine where the instructions are obeyed in sequence, and
have an absolute address. Any address specified in jumps or discriminations are such that they
cannot be misinterpreted and do not have to be changed if extra instructions are inserted in the
programme.

(v) There are particularly easy facilities for programme testing. In particular the
results of obeying any specified instruction may be printed out during programme testing, and
this print out may be inhibited for later production runs.

(vi) Facilities for instruction modification and counting round loops are particularly
easy, and no resetting of counters or instructions is normally called for. This removed a
fruitful source of error in programming.

The method of programming is best demonstrated by an example,
Suppose it is required to calculate (x̂ + x2)(x^ - x^) where x̂ to x^ are given, then

the programme is literally,
Read 4 data into x̂ onwards (i.e. read x̂ xg x^ and x^)

x5 = x1 plus x2

Xg a Xj minus x^
x^ = x^ multiplied by Xg P (where the P indicates "Print").

In addition to the 'three address plus function' nature of these individual instructions it is
possible to label any instruction with unique and characteristic number, called a reference,
and then any instruction which specifies the reference of the instruction to which the jump is
made. For instance the programme

63 x1 = 1 plus x1
If x2> x̂ jump to R63

will add 1 to x1 and the test if xg> x̂ . If xg is > x̂ , it will jump to the instruction
bearing the reference of 63, i.e. repeat the cycle. When eventually x1 ^ xg then the
programme continues normally. The interesting point here is that if it is subsequently found
necessary to insert an extra instruction between these two, the connection will not upset the
validity of the jump instruction or its reference. The relative numbers given in a reference
are translated into absolute numbers as the programme is run in.

Subroutines can be readily accommodated without the necessity for planting links. Any
sequence of instructions which forms a subroutine is merely headed "S15 Subroutine" (for the
15th subroutine) and terminated "End of Subroutine S15" and the links are automatically
supplied. The procedure caters automatically with higher order subroutines.

All operations are carried out in floating arithmetic, with the exception of 63 stores
(n̂ to ng^) which may only contain integers. These are used primarily for counting in loops,
but simple arithmetical operations may be carried out on these numbers. A particularly useful
instruction is

"Count n^ up to n^Q jumping to R7"

-22.04-

DPCS 2

which has the effect of adding one to the store n^, compwing its contents with n^Q, and if the
contents are nOt equal, jumping to R7. When n^ eventually contains the same as n^0, it is
automatically reset to zero, and the programme continues normally.

Instructions are obeyed at a rate varying from 50 per second to much lower speeds in the
case of the comprehensive instructions "Integrate", "Solve Differential Equations" or "Sum
Series". In most programmes an average speed of 10 to 15 instructions per second will be
maintained. Since the instruction code is so economical (saving by a factor of 10 to 20 on the
number required for a corresponding orthodox programme) the speed is considerably greater than
is at first sign apparent. The obvious use of the scheme is for those who require a quick
solution to a 'one-off' problem, in which operations in parallel on 'bulk* data is not
convenient. However 'orthodox' DEUCE Programmers also, find the scheme of great value not only
for 'one-off' or 'few-off* problems, but also for constructing major programmes by obtaining
trial results for checking purposes, and perhaps more important for exploring the logical
difficulties before the programme is written.

.-. 22.5 DEUCE ALPHACODE TRANSLATOR.
Whilst not strictly an Interpretive Programme, the DEUCE Alphacode Translator is worthy

of mention as it extends the scope of alphacode considerably.
Having produced a working alphacode programme, the translator programme will read this i

programme as its data, and from it produce a programme in conventional DEUCE code to perform
exactly the same calculation, but without the time loss in the interpretive stages. The
resultant DEUCE programme can be up to 10 times as fast as the original alphacode programme,
but will take 1^ - 3 times as long as the same calculation programmed in DEUCE code. However,
the reduction in programming time and, more important, in programming knowledge, makes a
translated alphacode an attractive proposition if results are required quickly or if there is
a lack of available programmers.

It should be noted that the alphaoode translator will work only if the library alphaoode
is used. Variations of alphacode incorporating looal modification exist at several
installations - these are not allowed for in the translator.
22.6 REFERENCES.

Gr.I.P. DEUCE Programme Report ZC01T/S (No. 475)
T.I.P. DEUCE News No. 28.
DEUCE Alphacode DEUCE News No. 49.
DEUCE Alphacode Translator DEUCE Programme Report ZC23T·

DEUCE News 47 pages 4~7·

-22.05-

-C22.01-
GENERAL CONSIDERATIONS OF SORTING.

C22.1 RE3UIRB.IENT FOR SORTING.

On any f i le updating run, i t is necessary to deal with current data (e .g · new trans
actions, stock movements, or sales) in the same order as the main f i le or f i le s (e*g* balance,
history end reference f i le s) · In most cases the input cannot be prepared in the required
order, and i t therefore has to be sorted. Output from the computer may be of several different
kinds, e.g* rejections, queries, invoices, and sta t is t ic a l d eta ils, each being put out as i t
ooours: before any further action can be taken the output must be sorted into these different
o lasses, and any class may be needed for another computer run in whioh a different order is
required.

022.2 REVIEW 03? METHODS.

B asically , there are three methods of sorting, though numerous variations ex ist. The
three ares-

(a) Diverging,
(b) Merging,
(0) Replacing.

The f ir s t two are used by punched-oard equipment) a ll are available in a computer so rt,
but i t i s merging which finds the most general application.

2.(a) Diverging.
This i s the basic method used in a punched-oard sorter. The cards are placed face down

in the hopper and the machine set to read the least sign ificant d ig it of the key, placing each
card (s t i l l face dam) in one of ten pockets, according to the value of the d ig it. At the end
of the passage, the cards are collected from the lowest-mumbered pocket f i r s t , the contents of
eaoh pocket being placed an top of the p ile . This p ile i s transferred to the hopper, the next
least sign ificant column i s se t, and the process repeated, un til each oolurai o f the key has been
used.

(1) This i s a sort by least ei& iifleant d ig it f i r s t (L.3.D). The opposite method
(M.S.D.) does not lend it s e lf readily to a punohed-oard sorb.

(i i) This i s a purely numeric so rt. Alphanumeric sorters can be obtained, but their
operation i s somewhat more complicated.

I t w ill readily be seen that in the computer the above method can be precisely emulated,
exoept that there w ill be only two 'pockets” , as eaoh binary d ig it i s considered. The block
diagram fo r a tr iv ia l case follows. Hi th is end subsequent block diagrams, capital le tte rs
represent areas o f the store (in DEUCE eaoh i s a Delay line) end small subscripts represent a
part of the area large enough to contain one of the items being sorted· Comparisons of numbers
are represented by a colon, and i f two items are shorn as being compared, i t i s understood that

At.
only the keys are in fact compared. Thus "Aa t Bb" means "Has the item stored in the a part

At.
of area A a key greater than, equal to , or le ss than, that of the b item in area B?"

Example 1t Block diagram for sorting 32 items, eaoh of one word in length, stored in
Delay Line A.

DBCS2

~C 22.02·

DPCS2

-C22.03-

(i) The key has been treated as occupying the whole word-In each item; in practice
i t i s to be expected that i f the item i s only one word long, the key would be a
few d ig it s merely. I f in th is example the key was contained a t P21 -27, then x
would be se t a t 21 and y a t 28. More w ill be sa id in Section 3 (c) about the
range of keys.

(i i) The routine i s an exact simulation o f the card so rte r operation. I t i s easy to
see that economies can be made both in the storage space used and in transferring
items to and fro between the Delay Idne3, although the organ isation involved w ill
be somewhat more complicated. In a M.S.D. so r t , fo r example, the technique
would be to examine the f i r s t word in the D .L .; i f the most s ign ifican t d ig it
o f i t s key i3 zero, leave i t in the f i r s t p lace , and examine the second; i f
non-zero, place i t a t the end o f the D .L ., f i r s t extracting the word already
there and now examining i t in i t s turn. When a l l 32 words have been placed,
the D.L. e ffec tiv e ly has two section s, with sm aller keys in the f i r s t and la rg er
in the second. The process can be repeated on the next most s ign ifican t d ig it ,
but now treatin g each section separately, and thereby creating from sm aller
section s, in ascending order as compared with each other but not in themselves.
YJhen a l l the d ig it s o f the key have been d ealt with the sort i s complete.

Exercise 1.

Draw the blook diagram fo rso rtin g 32 item s, one per word in D .L.A ., each with i t s key at
PI-6 , without moving any items into another D.L. (Use o f the short sto res i s permitted.
The M.S.D. method should be used).

I t i s evident that more than one d ig it o f the key can, in general, be used a t a time:
using two d ig it s would require four "pockets", and n d ig its a t a time would require 2n pockets.
The d if f ic u lty i s that each pocket must be capable o f containing the whole o f the items to be
sorted, unless i t i s in the nature of the data that the keys are spread f a i r ly evenly over th e ir
possib le range. In the extreme case, i . e . that where no two items have the same key and no
p o ssib le key value i s unused, one i s able to use the extreme form of diverging so r t , namely the
"pigeonhole" method (provided always that there i s su ffic ie n t storage space in the machine: the
method would not be fe a s ib le on raagnetio tape). Here each storage address i s , as i t were,
"labelled " fo r a p articu la r key, and when the key i s found the item i s sent to that address.
In computer terms th is means that eaoh item 's destination address i s calcu lated from i t s key;
henoe th is method i s often ca lle d "Address C alculation",

Where the extreme condition o f oomplete correspondence between actual and possib le key
values Is not atta in ed , "Approximate Address Calculation" i s s t i l l ava ilab le . This method,
whloh needs a oerbain amount of spare storage spaoe, oaloulates an address from the key; i f
th is address i s already ooaupled, the item i s placed in an adjacent address. Some shuffling
may be neoessary in parts o f the store which beoorae overorowded: th is may be done either as the
so rt proceeds, or when gathering up the data a t the end. Some overflow arrangements must also
be made. As may be imagined, the method i s highly complicated to programme, fo r which reason
we oannot go more deeply Into i t here. Nevertheless, where the r ig h t conditions (o f (i) near
correspondence o f actual to p o ssib le key«values, and (i i) about 130^ spare storage spaoe) apply,
very good re su lts are obtained by th is method.

Hotfls on Example 1 »

DB3S2

-C 22.04-

2. (b) Merging.
Tills is tli(3 basic method used in a punched-card collator. Tv/o inputs are needed, and the

keys of the two cards currently available are compared, the card containing the smaller key being
passed through. (Alternatively the machine can be set to take the larger key where descending
order is required). Thus two packs each in order in itself are brought together into one
completely ordered pack. V/here a pack is not in order in itself, it may nevertheless be
considered as consisting of several smaller packs which are, although in some cases these "packs"
may consist of one card only. If we call each of .the "packs" in which complete order exists
"strings" then it is dear that by repeated merging the strings can be lengthened (and the
number of strings in the whole pack reduced) until the whole pack forms one string, i.e. is
completely in order. In practice thi3 collator method would not normally be used for data
commencing in random order, but for the computer merging is very often the most suitable method
even in thi3 case.

In the "fixed string" method the initial data is considered to consist of strings of cne
item each, disregarding any order already existing. At the first pass the leading item from
one input is compared with that from the second input; the lower is placed first on the output
and the higher second; the next two input items are treated similarly, and so on. As the
output will have to be split anyway to form two inputs to the next pass, it X3 convenient to use
two outputs, switohing from one to the other at the end of eaoh string. These two outputs, now
consisting of strings of two items each, become inputs to the next pass, in which strings of
four items each can be created.

Example 2.
Original Input. After 1st p a33. After 2nd pass. After 3rd pass,

7 3 • · · · · · 3 4 3 1 1 5
4 5 ··· ♦·♦ 7· · · 5♦ ·· 4 2 2 6

1 8 • ·· ··« 1 2 5 6 3 7

6 2 • ·· ·· ♦ 3· · · 6·· · 7 8··· 4 8

Notes on Example 2.
(i) Notional ends of strings are marked by dotted lines in this illustration; a

physioal marker is not, in fact, necessary, although we shall see later that it
is in oertain cases convenient.

(ii) Y/ith 8 items to be sorted, 3 passes were necessary: in general log2 N passes
are neoessaiy where N is the nearest number which is a power of 2, above the
number of items to be sorted.

Example 3.
Block diagram for a merging sort of 64 items, stored one per minor-cycle in D.L's.

A and B, with the keys at the most significant end of the words. The fixed-string
technique is used, and the results will appear in D.L. 's C and D.
(Here the capital letters L,M,N,P,Q,R,S are links or switches: other letters have the
same significance as in the previous example).

BECS2

-C ZZ05-

t

0DPCS2

-022.06-
Note3 on Example 3.

(i) The diagram should be easy enough to follow by reference to actual numbers,
e .g . those in example 2.

(i i) I t w ill be noted that there are considerable s im ila r it ie s between the first and
second halves o f the diagram; in fao t several in structions are duplicated· It
i s obviously p o ssib le to combine the two halves, using su itab le lin k s , thereby
reduoing the number o f in struction s.

Exeroise 2.

Redraft the diagram of example 3» to reduce i t to a simpler form.

In the "variab le strin g" method advantage i s taken o f any tendency towards the required
order, ex istin g in the input d ata . I t does th is by forming str in g s as long as p o ssib le ,
finding by comparison the actual end o f each str in g , instead o f counting as in the "fix e d strin g"
method·

Example 4 .

O riginal Input. A fter 1st pas3. A fter 2nd p ass. A fter 3rd p a ss .

7· · · 3 3 2 2 1 1
4* · · 5 5 4* · * 3 6· · · 2
1 • •C

D
« 7 4 3

6• · · 2• » · 8· · · 5 4
1 7 5
6· · · 6· · · 6

7
8· · ·

Notes on example 4«

(i) Aotual string-ends are indicated by dotted l in e s ; again in our la rg er examples
to follow we sh a ll be able to make use o f end-of-string markers, but fo r the
moment they are not necessary.

(ii) With 3 strings initially, 3 passes were necessary; in the general oase logg N
still applies, but N refers to the number of strings, not as before to the number
of items·

(i i i) I t would appear that each storage area needs to be large enough to contain a l l the
items being sorted; in practice the technique fo r avoiding th is requirement i s to
work from and to opposite ends of the areas, so that an overflow can be accommo
dated.

EECS2

I

-0 2 2 .0 7 “

O riginal Input. A fter 1 s t page. A fter 2nd p a ss . A fter 3rd p a ss .

Example 5»

Example 6.

Block diagram fo r a merging so rt of 32 items o f 1 me each in D.L« A, using variab le-strin g
technique.
(X represents a short store : other symbols as previously used).

DK3S 2

-C22.08-

(i) The task has been sim plified by having only one D.L. to so r t ; i f there had been
64 items so that we were working from and to opposite ends of two D .L 's . the
overflow/· arrangements would have added complications.

(i i) This method admits o f ready extension to la rger sorting ta sk s: working from and
to opposite ends o f the drum i s fe a s ib le ·

So f a r we have been considering merging from two inputs to two outputs, i . e . a "2 - way"
lerge. C learly the same prin cip les can be extended to a 3 ~ way merge (3 ihputs, 3 outputs
’orming inputs fo r the next p a ss) , and in th is case our formula fo r the number o f passes necessary
jeoomes log^ N. Though the number o f passes i s reduced, as compared with 2 - way, the sequence
>f in structions i s soinevhat more complicated} the same applies to each further extension to
μ - way, 5 - way, e tc .

Λ further v ariatio n i s introduced by the "cascade" merge, p a rticu la rly applicable to
nagnetio tape so rtin g . This merges data from several tapes on to one, the quantity on each
;ape a t the beginning being so arranged that each in turn o f the input tapes i s exhausted a t a
strategic point and i s rewound to form the new output tape, the previous output tape rewinding
simultaneoualy to form a new input tape. As w ill be seen la te r , before a tap» so rt we w ill
lormally have oreated quite long strin gs by in tern al and drum sortin g .

Example 7.

Suppose that when startin g the tape so r t , there are nine s tr in g s , each o f 1,000 item s,
whioh have been la id out as follow s: -
Ib sitio n A. Tape 1 : 4 x 1 ,000

Tape 2 : 3 x 1,000
Tape 3 : 2 x 1,000
Tape 4 : NIL.

I t i s c lear that the f i r s t strin g o f 1,000 from each o f the three tapes can be
merged into a sin gle strung o f 3,000 on tape 4 ; s im ilarly with the seoand s tr in g s , so
that when tape 3 i s exhausted the position (disregarding the items which have been dealt
with) i s : -

Position B. Tape 1 : 2 x 1,000
Tape 2 : 1 x 1,000
Tape 3 : -
Tap» 4 s 2 x 3,000

Tapes 3 end 4 have to be rewound, and now tapes 1 , 2 and 4 are the input tapes and
tape 3 the output. Hie f i r s t str in g o f 3,000 from tape 4 oan be merged with a s tr in g of
1,000 each from tapes 1 and 2, giving the following p o sitio n :-

Position 0. Tape 1 : 1 x 1,000
Tape 2 : -
Tape 3 s 1 x 5,000
Tape 4 s 1 x 3,000

A fter the rewind, these can be merged in one operation to oomplete the so r t . The
tran sitio n from position A to position B involved the tran sfer (tape-to-tape) o f 6,000 item s;
from B to 0 5,000, and from C to completion 9,000, a to ta l of 20,000 item -passages.

Noten on Eratrrnle 6«

1PCS2

DPCS2

-C22.09-
In tabu lar form:-
Table 1.-------- - No. o f item - passages to
Position . Tape 1 . Tape 2. Tape 3 · Tape 4» reach th is position from l a s t .

A 4 x 1,000 3 x 1,000 2 x 1,000
B 2 x 1,000 1 x 1,000 - 2 x 3,000 6,000
C 1 x 1,000 - 1 x 5,000 1 x 3,000 5,000

END - 1 x 9,000 - - 9.000
20,000

How do we arrive a t our opening s tra te g ic values o f 4 ,3 and 2? This can be
discovered by working backwards from the end and analysing into the number o f str in g s on
each tape. At each stag e , the str in g s on one tape (the one chosen being that with the
greatest number of s tr in g s) are d issected into that number o f strin gs on each o f the
other tapes, which are o f course added to those already there. Thus:
Table 2,

Stage, Number o f s tr in g s .
Tape 1 . Tape 2. Tape 3. Tape 4 . Total.

1 1 0 0 0 1

2 0 1 1 1 3
3 1 0 2 2 5
4 3 2 0 4 9
5 7 6 4 0 17
6 0 13 11 7 31
7 13 0 24 20 57

and so on.
In example 7, the to ta l number o f s tr in g s o rig in a lly was 9, so from the table i t oan

be seen that these must be mounted 4 ,3 and 2 . But in practice our opening strin g to ta l may
not correspond with a value in the to ta l column o f Table 2. What then? I t has been
found that the best method i s to bu ild up to the next higher value with dummy str in g s ,
i . e . str in g s each o f length 0 item s: these dummies should be a llocated as early as
p o ssib le equally between the tapes. Suppose that we had started with 13 strin gs o f
1,000 items each, Table 1 would become :-
Toble 3.
Position . Tape 1 . Tape 2. Tape 3. Tape 4 . Item - passages.

2 x 0 1 x 0 1 x 0
A 5 x 1 ,000 5 x 1,000 3 x 1,000

1 x 0
B 3 x 1 ,000 2 x 1 ,000 - 1 x 2,000 8,000

2 x 3,000
1 x 2,000

C 1 x 1,000 - 1 x 4,000 2 x 3,000 6,000
D - 1 x 6,000 1 x 4,000 1 x 3,000 6,000

END 1 x 13,000 - - - 13,000
Total " 337ΟΟΟ"

So fa r we have used four tapes in i l lu s tr a t in g the method, thus obtaining a "tliree-
to-oae" cascade. Again th is oan be extended to any "N-to-one" where N i s greater than
one.

-C22.10-
Exercise 3»
Construct the equivalent o f Table 2 where 6 tapes are a v a ilab le , i .e » fo r a five-to-one
cascade.

I f the data of Table 3 were sorted by an ordinary 2-way (two-to-two) merge (3-way or
more cannot be accommodated on only four tapes) we would expect 4 passes to be needed, fo r
logg 13 l i e s between 3 and 4» At each pass, every item i s transferred , so the number o f
item-passages would be 4 x 13 x 1,000 = 52,000, The cascade method shows an appreciable
improvement, to 33*000, In general for any s ig n ifican t number o f s tr in g s the oascade
method w ill require considerably fewer item-passages than the N-way merge availab le on the
some number o f tapes.

Example 8.

Pour-tape cascade so r t . The it®ns arc already in s tr in g s , each oonoluding with an
" end-of-string" marker, i , e . a dummy item with a key la rger than any po ssib le key in the
data. In addition each tape must be concluded by an "end-of-tape" marker, i . e , another
duinrry whose key i s d iffe ren t from any possib le key. I t ±3 assumed that the data i s an
tapes 1 , 2 and 3 and has been brought up to the appropriate s tra te g ic number o f str in g s by
the addition o f " end-of~3tring" dummies at the beginning o f each tape. Each block (except
the la3 t) on tape must correspond in length with the area o f the sto re in which i t i s to be
worked (in DEUCE th is would normally be 1 D.L.)
(in th is example "T " meon3 "tape number other symbols as previously used).

1 -><*·, a , b, o, d.
2-»/9.
3^r.
4-» S
Set h = no. o f items in each storage area (e ,g · i f the area
i s 1 D.L. and eaoh item i s o f 4 mo length, then h «* 8) ,
Set x = end-of-string symbol.
Set y = end-of-tape symbol.
Set LI, M1, PI,________________________________

T * ->■ A
Ty# B
T j.-*· C

Ϊ
Enter main loop (see next page)

(

2>PCSZ

•C22.12—
Notes an example 8 .

(i) This important method i s worthy of c lo se study and should be thoroughly understood*

(i i) The strik in g thing about th is diagram i s i t s sim plioity (i t i s simple oanpared
with other so rts which involve tape organisation) . This i s ch ie fly due to the
inherent sim plioity of the cascade method, but there a re a lso some points o f
technique involved. Note p articu larly the use o f end-of-string and end-of-tape
markers, and how these are reproduced cm the output tape . Other points w ill be
brought out in section 4 ·

2.(0) Replaoing. (Variation (i))
The sim plest example o f replacement method i s that in which a se r ie s o f numbers are

examined to fin d the sm allest, v/hich then changes p laces with the f i r s t · The rema inder are
soanned and the sm allest o f these changes place with the second; and so on·

Example 9.
A simple block diagram fo r sorting the 32 numbers in D.L. A by th is method·

EFCS2

-C22.1>-

This variation· takes too long to be of much practical value, but there are some more
sophisticated ones which are sometimes useful for sorting in the high-speed store· A. feature of
replacement methods is that little or no additional storage space is needed than is already
taken up by the data.

Variation (ii).
Compare the first item with the second, and if they are in the wrong order, interchange

them. Compare the (new) second with the third, interchanging if required, and so on to the end·
Now start afresh, unless no interchanging has taken place, in which case the sort is complete·

This also is rather slow as several passes may be needed, but an improvement can be obtained
by including the rule: whenever an interchange takes place, compare the item moved up with the
one above it, interchanging if necessary and comparing again until no interchange takes placej
then resume where you left off. In this way the whole sort comes out in one passage·

Variation (iii)· J.VCompare the first with the (n + 1) where n is first set at half the number of items)
tilinterchange if necessary; compare second with (n + 2) and interchange if required; oantinue

till last item has been examined· Reduce n by half, and provided it is not less than 1, restart·
) V/han n becomes less than 1, the sort is oomplete. (Special rules are needed where the number of

items is not a power of 2)·
Again this is slow unless it is improved in the same way as Variation (ii), by allowing an

item which has moved up to go further up if required in the same passage·
Insertion· In this method an incoming item is oompared with each in turn of the items

already dealt with; when its place is found the remainder are pushed down one place to leave
room for this item to be put in. Its main use is when items are coning in singly, e»g· from
card reading, and each can be dealt with during the card cycle; this method is then preferable
to one which requires a batch of items before anything can be done and then has to interrupt the
reading while the sort takes place.

Example 10.
To insert items ooming in singly, into a L.L.

Set 3 as the number of items the D.L. can contain.
Let each incoming item be called I.
The "dumny’' must be larger than any possible key.

KECS2

Notes on example 10«

(i) Thia i s quite a simple subroutine on DEUCE, because the D.L. used i s No. 10 and
T.C.A* i s used to make the tran sfer (Aa to Ak) ->(A a + 1 to Ak + l) .

(i i) This tran sfe r must not be c y c lic , i . e . an item in mc31 must not come round to mcO*
As w ill be seen, the dummy item i s thus, as i t were, pushed o f f the end of the
D.L. when the la s t item to f i l l the D.L. i s inserted*

C22.3 FACTORS MILUENGIN& CHOICE OF METHODS.

I t i s assumed that the method chosen w ill be that which completes the so r t most quickly,
with ease o f programming a secondary consideration to decide c lo se ca ses.

Up to th is point nearly a l l th at Iras been sa id i s applicable with but s lig h t m odification,
to any oowputer· What follows i s , however, sp e c if ic to DEUCE.

3»(a) Item S ize .

The most manageable s iz e s o f item are one, two or four minor-cycles. This i s beoause,
although in block diagrams we b lith e ly send Aa to Bb, we know that on DEUCE (e .g .) 9 ^ - lOgg (

in p ossib le , and we must do (e .g .) - 16 and 16 - "*°22* 'with four-word items oertain
d if f ic u lt ie s are encountered in moving items through the short s to re s ; fo r example 9q _ ̂ - 17
must go to i t s next instruction in m .o.3, so that i f on successive v i s i t s to a point in the loop
we wish to do 9q ^ ^ - 17» 9^ _ η - 17» 9g „ ^ - 17» e to ., we must provide a fresh instruction
(in. m,o. 3»7» 11 etc) each time. At f i r s t sigh t the same applies in the reverse case 1 7 - 1 0
(x to x + 3) but most o f the time a teolmique which can be used to overcome th is i s to do
17 - 10 yy where x takes successive values 0, 4 , 8, e to · Extra copies are obtained through- (
out the D.L. but are over-written in due course by the new items. %

Therefore where items are more than four words long, some method which involves the minimum
o f tran sfe rs , such as Approximate Address Calculation, w ill commend i t s e l f ; or i f merging i s
chosen an e ffo rt w ill be made to use 4-way or even more desp ite the programming complications, so
that the number o f passes i s minimised.

Where items are o f variab le length, i t may pay to go stra ig h t into a tape s o r t , beoause
such items are d i f f ic u lt to handle on the drum; but sometimes a sp ecia l technique (see 4 (a))
may be availab le .

3 (b)« Key Length*

Merging end replacing so r ts are v irtu a lly unaffeoted, within lim its , by the length of keys,
fo r the process i s one o f comparison which must be done by arithm etics: -

A - 13
B - 26

13 - 27

X X
A5-B A < B

and i t makes no d ifference whether the key has 1 d ig it o r 31 * Indeed i f the key has up to
63 d ig it s i t merely means that the comparison i s made in DS 21 instead o f TS 13*

In diverging, on the other hand, the number o f passes required i s in d irect proportion to
the number o f d ig it s in the key; hence suoh a method would be most unattractive where long keys
were in evidence.

-C22.14-

DKJS2

3 (o)' Key range.

I t has already bean sa id that Address Calculation i s lik e ly to be the appropriate method
where there i s correspondence between actual and possib le key values. For example on the input
to a payroll run y/e might expect one item fo r each employee an the bodes: no key unused, no key
used twice.

S im ilarly , where near correspondence e x is t s , the method o f Approximate Address Calculation
commends i t s e l f . For example, on a share c a l l payment accounting run, we would expect on the
due date that most shareholders would have made one payment and few two payments; so that given
a small amount o f spare space on the drum to allow fo r the few cases, a l l the payments would be
sorted in one passage. Even where the correspondence i s not so near as in th is example the
method can be quite powerful i f given rath er more spare storage space.

3 (d). Quantity o f data..

Vfliere the quantity i3 small enough to be sorted in tern ally (i . e . on drum and mercury
alone) the choice w ill be made according to the above considerations; but where tape sorting i s
necessary merging w ill almost certain ly be the most a ttra c tiv e method. Only in the case o f &
very short key (say about 12 binary d ig it s) w ill diverging be quicker, and a short key i s unlikely

) in so much data. Replacing and Address Calculation are hardly fe a s ib le a t a l l on tape, due to
the long random access time.

I t has already been shovoi that among the tape merging so rts the aascade method invoves the
fewest item-pa3sage3 and i t s organisation i s i f anything sim pler than that o f other merges, anoe
i t i s tinder way. The only point on which the oasoade lo se s out i s that I t demands specia l
assembly o f the strin gs being put on tape before starting i t s programme. However the teohnique
o f th is assembly i s not so d if f ic u lt as may appear. Therefore in rry opinion cascade merging i s

♦ l ik e ly to be aooepted as the universal tape sorting routine.

022.4 Trafiiqmss of soiling.
This section(indeed the tjftafo le c tu r e) is by no means comprehensive, but i s merely intended

to pass on a few ideas which may oe found u se fu l.

A (a). Special Techniques.

Where items are very long (probably about 9 nnc, in the c r i t i c a l point, but th is can only
be determined by reference to the sp e c if ic job) i t pays to send than stra ig h t to the drum,
extracting from each i t s key and storin g th is with the address to which the item has been s a l t .
Then these keys-plus-addresses can be sorted, and the items fetched Ui order from th e ir addresses.

Where items are o f v ariab le length i t w ill sometimes be convenient to tre a t then as o f the

same length but providing continuation f a c i l i t i e s . Suppose, fo r example, that most items are 3 or
4 words but some are more, up to a maximum o f 8« Then i t would be convenient to t„e a t them as
4-word blocks; the programme would be written to recognise a continuation marker (e .g . a P32
in the 4th word) a s showing that the following blook was a continuation of th is and must be
transferred with i t .

One technique which the b?.cck diagrams may help to bring out i s that o f ohoosing carefu lly
the means to e x it from numerous loops, aid in p articu lar in finding out when the so rt i s complete.
By a carefu l examination of t lu method adopted in any p articu lar oase, i t can often be found that
some feature i s naturally present only a t the end of a p ass , o r only a t the end of the so r t , so
that a ready check i s availab le to find the way out. In other oases i t may be necessary to kick
over some tr igger, e .g . when an interchange i s made, and to check on the s ta te o f th is tr ig g e r to
fin d out when the sort i s complete.

- 0 2 2 .1 5 -

TEBCS2

h. (h) , Combining Methods.
More highly soph isticated sorting systems can be devised by combining the basic methods

outlined. For example in a multi-way merge i t i s required as each fre sh item i s introduced to
compare i t s key with that o f the several other leading items to se le c t which i s next to be
placed on the output str in g (and, in the v ariab le-strin g teclmique, to compare with the item
la s t put out). The natural process i s to keep the leading items in order amongst themselves,
using an insertion technique to place oach fresh entrant, and many f r u i t le s s comparisons
eliminated. Go th is i s an insertion-cum-merge. Many more examples w ill occur to the student
once he i s fam iliar with the basic methods.

4 (o) . Balancing the Use o f Mercury, Drum and Tape.

Usually the procedure fo r any major sorting operation w ill b e :-

(i) Read a batch o f data into the high-speed sto re , so rt i t there, and write i t in one strin g
on the drum; repeat th is process t i l l the drum i s f i l l e d to the req u isite degree (moet
often th is w ill be h a lf - fu l l) ;

(i i) Perform a drum sort (most often by a 2-way merge) u n t il a l l the data there can be written
in one str in g on to tape; repeat steps (l) and (i i) t i l l a l l data has been read.

(i i i) Perform a tape sort (probably using a cascade merge).

During stages (i i) and (i i i) tran sfers can be made concurrently with computer working,
provided that su ffic ie n t high-speed storage can be found to act as a kind of reserv o ir. This
i s d i f f ic u lt on a Mark I I DEUCE; fo r a 2-way merge or a 3~to-1 cascade from D .L 's . four are needed
to work in , plus D.L, 11 fo r drum tran sfers or D.L. 9 fo r tape tran sfe rs : the remaining seven
D .L 's . w ill surely be almost completely occupied by programne. However on a Mark I I A space i s A
av a ilab le , and should be used, to absorb the tran sfe r times, even though the programming
organisation becomes quite complicated. The programme must always be looking ahead to see
what tran sfer i s next required, and position ing th e drum heacb or ca llin g down the appropriate
track Or tap.; Hock, in advance o f actual requirements; i t must be able to ascertain the
current s ta te o f transfers end as there i s no TIL-lilce s ign a l but only an interlock (which i t
cannot invoke without Iocs o f tim e), i t s timings must be very carefu lly calcu lated .

In tape working, i t w ill sometimes pay to use the drum as a reserv o ir, f o r th is permits
longer block s iz e s to be written on tape, consequently reducing the incidence of tape sta r t- s to p
time.

A (d). Calculation of Times.

This i s a most important sub ject, yet one on which i t i s almost impossible, to lay down
general ru le s : an attempt w ill be made to show the method o f calcu lation , however, fo r a so rt

using the procedure o f 4 (c)

(i) I t i s quite lik e ly that the data i s being read in from cards. In th is case , the
method o f high-speed sort and the batch s iz e w ill be chosen, i f a t a l l possib le (and generally
i t w ill be) so as to be accomplished, together with any other work (e .g . conversion to binary)
that needs to be done on the items, within the card oycle time»

Suppose that the items are o f four-word length, including 2-word key, and th at an insertion
technique i s used. F i r s t , compare the key o f the incoming item with each in turn o f those
already stored u n til i t s place i s found: -

- 21
1 3 - 0

£ l0 .c- 23 (a)3 x = 0, 4 , 8 e tc .
213- 27

Place found.

I

-C 22.16- !

PICS2

Each time through this loop must cost 2 major-cycles. The first item will go once through it
(being compared with the dummy) > the second item either once or twice (average 1¾, the third
item once, twice, or thrice (average 2) and so on till the 8th and last. The average for any
one of the eight then, is (1 + 1-2 + 2 + 2 ^ + 3 + 3^ + 4 + 4¾) - thrice, so we can say that on
the average 6 m,s. will be spent on this part. Next after modifying the appropriate instructions
by reference to 13 we must move down the items after the required place to make room for our new
items-

1 " — \

A30 17q '-.0 +JPI7 + E22
(16 - 10 1) m»o.s. x to 30# spilling cm, x + 3 to 31.

N / \
-- ■----- f SUED

ASTER
4
l

A31
Each time through this loop is usually 1 m.s, but sometimes 2 sus, and can be averaged at 1%-, so
that four times through costs 4¾ m«s. A further 2 m.s. is needed for transferring the new item

’ ; through a Q.S. to its appointed place, and about '2% nus. more for general organisation and
instruction time. Hence total time per item is 6 + 4i + 2 + 2¾ ■= 13 m.s. The transfer to drum
oan proceed in parallel.

(ii) Suppose that we build up half a drum-full before going to the second stage, we shall
have 1024 items in strings of 8. A two-way merge will require log^ “ 7 passes, or 7,168
item-passages. The average time per item-passage can be calculated on the same lines as above,
but allowance must also be made for drum transfer times, when these cannot be absorbed· In

•
 practice a figure of about 10 m.s. per item-passage can be attained on a Mark II HEDGE, so that

the drum-sort time for each such batch is approximately 72 seconds. To this should be added the
time for transferring the resulting string to tape. Let us assume that in the next (tape sort)
stage we shall not be able to make concurrent transfers due to lack of storage space, but instead
we plan to use the drum as a buffer, and thus deal with tape blocks of length 4 tracks, i.e. 32
items. Thei’e are 32 such blocks to be written now, each taking 88 m.s. (assuming binary write)
+ 30 m.s. start-stop time. 32 x 118 m.s. = 4 seconds approx.

(iii) Steps (i) and (ii) having been taken alternately, we oan now calculate the number
of item-passages which will be needed in the cascade 3ort, by the methods indicated in section
2 (b). The time for the passage of each block (of 32 items) is oalculated thus:-

Read from tape to drum (88 M.S. + 15 m.s. start time) 103 m.s.
Transfer each trade (8 items) as required to high-speed
store (4 tracks ©17 m.s. each) ...'...... 68 m.s.
Sort in high-speed store, 32 items © 5 m.s. each 160 m*s.
Transfer results as formed from high-speed store to drum 24 m.s.
Write from drum to tape ·.··...*··· 103 nus.

458 m.B.
E An average, since transfer to drum can proceed in parallel with other work, and the
maohine will have to wait for its completion only when shortly afterwards it is
required to make a transfer from the drum.

Hence the time for this stage = No. of item-passages x nus.

-C22. 17—

DFCS2

RBFBREKC5S

The following articles, in particular the first, are recommended for the student
who wishes to examine sorting procedure in more detail:-
(1) Ξ. II. FRIEND. Sorting on Electronic Computer Systems. Journal of the

Association for Computing Machinery, Vol.3, 1956,pp 134 - 168

(2) Η. H. SEWARD Information Sorting in the Application of Electronic Digital
Computers to Business Operations, Master's thesis, Massachusetts
Institute of Technology 1954·

(3) D. L·. SHELL A High - Speed Sorting Procedure, JACM Vol.2 No. 7 1 959,Ρ·30·

(4) E. J. ISAAC and R. C. SINGLETON '
Sorting by Addre33 Calculation. Presented at meeting of ACM Sep 1955·

(5) BENJAMIN L SCHWARTZ
Criteria for Comparing Methods of Sorting. Presented at meeting
of ACM, Sep. 1955·

(6) WRIGHT AIR'DEVELOPMENT CENTER A ^
Mathematical Analyses of Sorting Procedure. ψ

-022.}8 -

DPCS2

)

>

23

T _ J* SIMPLE AIPHACODE PROGRAlflCTMB
1« IBTRODUCTION.

It is now wall known that oomputera oaa be very useful to engineers, scientists
an& hualneaa men who have a lot of dull repetitive arithmetic to do or who would like to do
this arithmetic for design work but have neither the time nor the resources to do it·
What ia not so well known» perhaps is that in order to make computers do this work a
programme of instructions has to be written which are so basio and full of details that
the very labour of writing a programme to do the sums required nap ba as large aa the
work involved in doing the sums themselves.

In order to overcome this difficulty the English Bleotrie Company has produced an
interpretive programme for their computer» DEUCE· By the uae of this aoheme oalled
AIPHACODB the nonprofessional programmer oaa write a programme In simple language and let
DEUCE interpret this language into its own order code.

The following few pages are to introdnoe laymen to alphaeoda and to enable them
to write simple and unrefined programmes· Those wishing to use all the facilities of
alphaoode should, after digesting this introduction refer to the complete alphaoode manual·
2 . APPRECIATION OP THE PROBLEM.

' The first and most important requirement not only in alphaoode but in all programming
is to know exaotly what the problem is which is to be solved. The method normally used to
diaaoot the problem is to write a block diagram. It is important not to bo lasy .In
writing this aa logical problems not resolved in the block diagram are more difficult to
solve when writing the alphaoode instructions themselves·

We will illustrate this conoept by writing the block diagram in whieh we set out the

f elementary steps required to read this paper.

' i--------- :----------------̂------ 1.. K«M> * ah* frft/venym/frfc.____________

¢0 |IU .. .

Ca*. y * nU jtu ?

Y« ,■ ____

jjouvt Λ̂ Μ*. /V&A4& « Α RtAitUL <U

^— — ~ * 1 ^ , f■ 1 ves
Τλγ <tv* fo h je *

AlPHACoIE
τ

ί θ-tc 4At ΛΧ^ι»^
tot

SCa λ ml a 7V"WV wt φ

p " "w* ‘ — '
I C o Itu AlPHACoJ>E 1

T --------------- -------1 I Aw— — I ■ -.

I

| EFCS1

m I
4

met '

A r'WKird, eligibly less facetious cac~j>le la proridod by iurj ablution of pojy***·4®1*
ty Newtorfs method. This method is as follows. if f(jt) is a polynomial and *λ A* *”
approxination to a root then a better approximation la given by

t (¾)
*1+1 * *l’ f(Xl)

The blook diagram will then be ae follows 1

iliuwt P*S»*n*e»»ai I.- ■ ?. ..,. , , __I

(?C?vd m, 1«.«bH *«*«*«* a I
mi-J—TT.-1·-· - .-- 1- I ...■■■■, - 1hJ 4

Jk » SS0 m l + J _________ ■« — ■ „ ------ —

C » M > A / ^ |

(ftX M o iO 4Cxi)

_________________ «
Cftta~C*6 *<*, · x< - 4 ¾ ¾

: 1 -
J s l * U i - x W < € ?

| — ^ s r

ϋ ΐ ϋ % £ ^ 3 ^ Λ m Aee»fj
ifr«*e*v»~* Jv* iKn ________-— * Η Γ ' .

/ - * ~ ____________T**
— - ^ 11 | w ~~ / fhst I
fts-oA. > *ό> / __________

«it J
________feta»» f%UMwst

•
II

*

Hewing written the block diagram of the Job wo ean now go on to writ· tho
necessary alphaoode instructions.
Sxsrolse 1·

frit· the blook diagram to solve * quadretio squgtioa ty the fotwMlas

π »

. . sr ft -, ^ z m«2 a
3. FORM OF INSTRUCTION.

Let ue ooneider the evaluation of ■ 3·3·3·3·3·3· V· can, if we let Z1 ■ 3 writ·
X2 ■ 11 x 11
23 · S x XI
14 « XJ ϊ X1

> X5 ■ X4 x X1
X6 - X5 x X1

and this is precisely the type of formula used in alphaoode· The symbol XI however dove
more than signify a quantity· it is the address of a store· Thus the instruction

X3 « X2 x X1

t should be read as "multiply the quantity in the store whose address is XI by the quantity
in the store whose address is X2 and store the result in the store whose address is X3*

*· eliminating the previous contents of X3 and leaving the oontents of X1 and X2 untouohsd"·
I*---

The particular pieoe of Jargon used to desorlbe this typo of instruction is to say
that it is a three address oode i«e. the form of instruction is

A ■ B funotion 0
A glance at figure one will show that the coding paper for alphaoode has ten columns·
We are at present interested only in those headed A, B, FUNCTION, C although later wo
shall use those headed R and D·

In the above example the reader will note tnat X2, X3, X4, X5 contain intermediate
results in whioh wo are not interested· We could write

X2 » X1 x X1
X2 - X2 x X1
Ά · X2 x X1
X2 ■ X2 x X1
X2 « X2 x X1

ana remembering the interpretation of these instructions given above we see that if
XI contains 3 X2 would now contain 3̂ ·
K. ARITHMETIC.

The four basio instructions of alphacode are
Xa ■ Xb + Xo
Xa > Xb - Xc

* Xa - Xb x Xo
■ Xa e Xb 4* Xc

• -5 -

*ί·

end the moaning of those is obvious. When an alphacode programme hna been written it can
be printed to give a clear copy and in this copy the operations defined above will appear
aa words thus

Xa · Xb MULTIPLIED by Xo
A specimen of such a tabulation is shown in figure two.

Exercise 2*
Given the three numbers a, b, o in XI» X2, X3 write the alphacede instructions

ο 2necessary to oaloulate b ♦ ao and b - ao.
5· TRANSFER.

Although at this stage it is not obvious why* it is often desirable to transfer
mbobers from one store to another. To do this we write

Xa > Xb MOVED
whloh overwrites the previous contents of Xa with those of Xb leaving Xb unchanged*
*. INPUT ATOP OUTPUT.

There are two difficulties which have been glossed over in paragraph three. Ye a aid
"if we let X1 ■ 3 "· How do we do this? Or, put another way, how do wo gat numbers Into
the machine? The second difficulty is, having obtained the result in X2, how do wa gat It
out to look at it?

The answer to both of these questions is of course, that wa have to use instructions
and these are as follows:

Read 1 DATA into Xo y
and Print 1 RESUM? from Xc r

Ye ean, and indeed it is desirable to read or print more than one result at a time
and so we can use an instruction like

Read 20 DATA into X21 onward
and this will road data into X21, X22,.... ,XM>.

Yo seem already to have deported from our three address format. The vital parts of
this instruction are however

20 DATA X21
the A position being left blank in this ease. Whenever wo write an instruction like this
wa shall always print the funotion name in capital letters, the words in small letters
being embroideiy to make tko instruction sound oorreot.

Lot us now consider a programme for calculating the areas of circles by the formula
A ■ JT r2. There are two different sorts of data to bo road in hero. The first type i· the
radius of the circle which we may specify. TC however is a constant which oan never change
and Is as much an integral part of the programme aa the instructions in it. For this typo
of data wo have a special instruction

Aa is CONSTANT

Tin* constant is then built into the programme and does not need to be read in with each
new sot of data. The programme now reads as follows*

1

flocai '

*

Ν». r * A 8 F U N C T IO N C 0 t j Ν Ο ΤΕ»

_______________ Μ ι _____CbustAmt....................... _t X/
_ _____________________ _____ ΪΊ^ΐΤη______ _ __________ ___ ____ ____ ______
_ _____ _ _ _ ___i______ $Ata______ ' x i ____ ._______ ^ m C -futtms y·_____
_____________Ml Xi______X_______ XI ______ _ »Wm. *x
____________ X i _ __Μ λ__ :_*________M t _______ >U». <uxc__
......... . I....geSULT.... X X <c« «>**»■.

The two constants 0 and 1 are already In the machine and can be used in the Xb and Xe
position of any instruction. Thus if we required 1 in X1 we would simply write

X1 a 1 MOVED
■zeroise 3·

Given a value of v write the alphaoode instructions to oaloulate the quantity
2 »2 A

f ■ 1 - where o is the veloeity of light · 3.10 aetres/seoond and print the result.
0

7# W STORES.
Before we prooeed further we oust mention two faoilities vis. ■ etoree end the

Jump facility without at present giving a reason for them.
In addition to the X stores» of which there are over 2,000 we have another type of

store in alphaoode, the 63 N stores N1 to N63. These etoree contain integers only and are
all Initially sero (as indeed are the X stores). We oaa operate on them with + - x *f-

0 just as for X stores exoept that in the ease of divide we get the integral part e.g. 3 - 3

t would give 1 and not if or even 2.
«Ρ
1., We may transfer numbers between N stores by MOVED or we oan transfer from N stores

to X stores or from X stores to N stores although in the last ease we shall get the nearest
integer to the number in the X store transferred to the N store (not the integral part as
in division) ·

Input to and output from N stores is effeoted by the same instruction as for X stores
exoept that we may read or print only one N store with one instruction i.e. the instruction
"Read 20 Data into N1" is not allowed. Further, a constant instead of being on a separate
line must be in the C position of the constant instruction thus»

Na » CONSTANT 3
As with X stores the constants 0 and 1 are already in the machine.

A final word on N stores. You may not mix X stores and N stores in a single
instruction (other than MOVED, DATA and RESULTS).
8, REFERENCES AND JUME.

If we wish to refer to an instruction from another part of the programme we «ay write
a reference number (eey 6) in the R oolumn of the oo&ing sheet. If now we wish to go from
one part of a programme to another we write "Jump to Rd", The programme now looks like
this

SPC81

-5-

%

N· ' · * B FUNCTION C D p S NOTE»
ΐ ~ τ ~ ι ~ : : :
•~...... .~— I__________ _______________________________
I —
i I ~ ~I ■
II JitrtP Λ *6
......... :....... ' I " '! | !

Let ua now see hoi* these facilities ere used.
9. C0UNHN&.

Coneider again the example in paragraph three.We aee that the same instruction is
repeated five times. This is going to become very clumsy if we wish to calculate x̂ 00.
To overcome this difficulty we have the following instruction

Count Nb UP TO 100 Jumping to Rd
where we can write any number we please in place of 100.

Written in full this instruction would read "Add 1 to the number in Nb. If this
number is not equal to 100 Jump to the instruction whose reference number is d. If it is
100 proceed to the n<txt instruction''· Its effect is to cause the loop of instructions
which it defines to be obeyed 100 times and then to carry on with the programme.

Our programme to calculate x100 would now look like this:

‘______________ __________________________________ *
N·. f R A B FUNCTION C 0 f ® NOTES *

__________________ l _____ DM A X I KulM . J K uU* X;
___________ _xq ·__I_____ iWBvej________ _____ ft» η μ »*« I.
______ t___ xx xx_______x_______ X i.....; __ CoJtuJttUk as** __

___________Cbbnt___Ν ι MP To_____ to t __ wit». ■» » to»

___________ P K ih tr__ I RCrou T____ yx ________. /**? ? **.

Tou may ask why do we need N stores at all? Why do we not count in X stores? In
answer to this, suppose we wished for some obscure reason to count on a desk machine by
§ up to 2· This seems to require three additions. However, in decimal § is represented
by 0.6667 and so our three additions would give 0.6667, 1.3534 end 2.0001 and we would
never get exactly 2. We thus ess that we require stores in which we can oount exactly
without ary possibility of rounding errors. As a corollary we aee that it is unwise to
expeat exact equality of numbers in X stores. We shall refer to this again later.
Kxercise 4.

Write a set of instructions to oaleulate P(i + -&-)25 and print the result.| W
10. DISCRIMINATIONS.

The oount instruction just desoribed is a form of discriminatory function. Alphaoode
oontains several more of theae funotioa* all of whioh say "if some condition is satisfied
Jump to somewhere else in the progrermw. If it is not satisfied proceed normally". These ,
functions are
DfCSl

-6-

#
* _ 7 -
§

if xb * (equals) xq Jump to Bd
If Xb / (UNEQUAL) Xo Jump to M
If Xb ^ (AS BIO AS) Xo Jump to M
If Xb > (BIGGER THAN) Xo Jump to R&

All those irmtruotions may bo used with N otoros o*g.
If lib EQUALS No Ju-p to Rd

Thu* in our example if wo wished to multiply x By itself until it wee lsrger then
10(000 (1 < x < 10(000) end print the power of x for which this wee first fulfilled «0
oould write

N*. , S A t FUNCTION C 0 F £ NOTE»

_________ _Xg_________ ttMSTAfift _____
t»t ο·ο sm&i__ __

__________ _______ J______data______ xi _________R t* * l oa w * x>__
____________X* XI Mcvep_____________________ ftwA. X» ______
_______ _a___Ni Nt ..__________ i__________ ________ _________
____ _____ ________ X_i______>________££_.TU_____ aa* ___
_____________ xi____xa______ x_______ jci______________ fr* > io. oso
_________________________ _ Ju m p to___________ Ka__________________________
________ j &Μ»0 \ jieevLT_____ N> __________<mA, fruLfr IV

i

r*
1

Exerolse 5.
Vylte e set of Instructions which divide the number in X2 by that in XI where if the

number in Xl is sero it is to be repleoed by e very smell number. (10"*®® may be oonsidered
smell enough end must be read using the appropriate instxvction).
11. INSTRUCTION MODIFICATION.

There is still one ahor booming left in the programme Just outlined· Xt works for
only one veluo of x· Suppose wo bed twenty values of x in X21 . · AO· Then in order to
repeat the ealeulation we would have to rewrite the inetruotiono for oaeh eoperete ease·
In order to avoid the noeosslty of doing this wo have a facility in alphaoode for nodiiying
lnstniotions·

The inetruotions
El UODIVT next inatruotion
X200 · X100 PLUS XI

would osuse the oontenta of Ki to be added to the addraoe in the A poaitlon ef Ike asst
instruotion. Thus if N1 oonteine 2 the two inetruotiono abovo would be equivalent te
X202 m X100 We oan vary any ef the addresses or any two or all three with any
W etore by putting the appropriate M store in the appropriate poeition of the nodi faring
instruction· Thus if Ifl oonteine 2 and H2 oonteine 6 the instruotione

m m MODIFT next inst H2 alee
X200 X100 PLUS X1

would be equivalent to X202 ■ X102 ♦ X7.m

BPCS1

*

a

Thus if we wish to multiply each of the numbers in X2i - X1*0 by that in X1 and
store the products in XM - X6o we would write

1 Ni N1 MODIFY next instruction
XM X21 MULTIPLIED by Z1

Count N1 UP TO 20 jumping to R1
remembering that UP TO adds 1 to tne contents of N1 eaoh time it is obeyed*

Notioe that a MODIFY instruction refers to one and only one instruction and that
if we wish to modify two successive instructions we must use two MODIFY instructions·
We cannot of course modify an instruction with the oontents of an X store nor can we modify
N store addressee e.g. we oannot modify the instruction N1 * N3 + Nit· Negative values
of a modifier are not permitted.

The example quoted above would now look like thisi

N,. r R A B FUNCTION C D P ° NOTEB

____________ X|__________Constant______ | At M i l J · » · · ·____
___ ________________________)*> °°°____________________ , Απλ frt « 4 ___
__________Λο_____________d a t a______ X» _______ /Zsaet its vtM u4 ae
_________L _ ________ f*i______ ____________________ _____Zau. Out ***&
____________ XL_ xai «motfen_________________ I *1 ac_____
____________ mi____ o_____Movejo__________________ Jyj. n p ___
__ __________ λα xi ________________ & ,***. as4* mmJDU

________A_ Ki Ma. 4*_______ I_______________ m* > iO)see____ *
_____ _______ y _____Xi _____ >_____; Xb Xl_____ /ug*\«Ui*j. 4» ___
.____________ xa____xi______ x _______xi________________ N*._____... . *
_____________________ Jump To _____ «a._____________________

.____ I_ N i__________ WoJiPv_________________ | ifr»u Ski»
____________ X4I Mi MbVdlD________________ / Sjf W _________
______ _ _ ____<fau*T Nl_____-MP To_____ ae X<? ___Jkftv».
___ 2e R £S»Lrs X4I_________ft* Λ

Am C jyvtMyf Al AM h Î ,

Rxerelaea
6· Given a set of radiuses in XM - X70 write a programme which calculates tbs

area of the olroles with these radiuses writing the results in X71 - 1100.
7. Given ten values of P and twenty values of z oaleul&te P(i * for all

eombinatione of P and x and print the results.
2

8. Given twenty values of a. b, o calculate b - ae for eaoh aat and print the
reeults.
12. COMPREHENSIVE FUNCTIONS.

Vo do not propose hero to mention many further faoilitiea in alphacode exoept to
point out that other facilities do exist of which we give three examples here·

m

.-W M ·* t

»
If Xc contains y then

Xe ■ BOOT Xe
pate + i/pin Xa,

X* « BXP Xe
put· f in Xai and

X» · LOG Xe
put» loajy in Xa.

None of these instructions can be used with N stores·
13· PROGRAMME TESTING»

One of the facts of life one learns when programming is Just how silly human beings
are compared with machines - machines do not make errors· human beings do; and nowhsrs is
this more marked than in writing programmes, for this reason there are some elpbaoode
facilities for programme testing· the most important of whioh is the P faoility.

If we write a P against spy of the instructions In alphaoods a signal from the
programme Operator will eause the result of each of theee instructions be be printed ss it
is calculated· Thus· with a liberal sprinkling of P's throughout the programme the course
of a calculation can be followed and errors easily dstsoted* Sines the printing with this
facility requires a signal from the operator, the P* s may be left in when the programme .
la working and have no effect on the programme·

The numbers printed with a P will appear in a form o&lled standard floating decimal
c i«e. in the form a. 1015 where 1 * a <10 and >999 Sb S 999, b being an integer· Per

example the number 1234*56709 will be printed as
^ 1.23456789 3

14. FINISH.
The last instruction of ary alphaoode programme must always be

FINISH

This instruction tells the machine that it has. finished reading instructions and must mow
start obeying the fir s t of them· Notice that the machine does not obey the instructions
a# it rssds them· Notice also that after reading the instructions it will obey the first
one and then oariy on obeying them relentlessly one after the other until it reaches FINISH·
It may be as well to look at your programmes again from the machine's point of view and
make sure you have written the instructions in the order in whioh they are to be obeyed·
Sxeroise 9·

This sxeroise enables you to use most of the functions mentioned in this guide·
(riven a set of numbers a b and e writ# an alphaoode program* to ealeulate

A.t V " £SL and -JBS
a a

punching the two results if b̂ - ac is positive; - ̂ end 0 If b̂ - so is ssro end 2 * two seroa if b - oc is negative·
Now extend this programme to deal with twenty sets of numbers a, b, o Using only

one read and one punch instruction·

%

Λ .

DPCS1

-ΊΟ-
ι

No. f R A B FUNCTION C D p ; NOTES

______________ & ___ _Xe_____M oy t p ______________ ____________________________
___________)<Λ _ N » /Vlotfg^ ___________________ ΤΚΛΝΛ Ρ * * ______
_________________Λ(α ____/*<8 _ Λ»0vgj>___________________
_______________/Va____ X»_____AlotfgJ) »k *y«») __ _______

_______________*A Xft_______» X«_____________________;____________
_____________ f^A N *________ + _________N c_________________________________

_______________Xa Xe_______ __________ X c_____________________.___________
_______________Ν λ __tfg________________K u & T A A C t_______

______________ l A ____ U _______ X_________Xe_________________________________
___________ Ν α Ν α X_________ N g ______________M ultiply.________

___________ _ _ ___.................. fx* ' " " _________________________
______________ Λ(α____ Ν α_______+______ N c o? f * of) _T)>V>to€..________
■ ^ Η Μ Η Μ Μ Ο Η Μ Ι Ο Η Μ Ο Β Ι Ο Ο Μ Μ Μ α Μ Μ Β Β Η Μ η Η Ι Μ Μ Ο Μ Ο Μ Ι Η Ι Μ · · · · · · · · · · · · · · »

_______________ _______ _____J o M t^ T * ____ 1¾ __ UHCo^tlTloHAL JfrM»»____*

— ■— — · » Μ · » Μ Μ Ι » · Μ Μ · Μ Μ Β Μ Β Ο Μ » Μ » · ί « » · Μ » M — — — — I 'l.................— « Μ ™ 1 I I W fT 'F " " " l 1 "IIV 'P T t »

_____________________ Xfi____ gfliMLf______ Xfc___ ______ Jt;MP To ff|> Xg*Xg **
___________________________________ N & E q u a l s ·__________ N c R *___________ J u m p t o Kb i f N & · /ve

____________ __________________ _______ '____ XtliWuM AifcurA*____
4uA^u«efin*

SSBOSBCMB 9HMHHBH M HHBHri SMBBMHBHMMMB 39MBBBERBB9MI μ μ μ μ εμ μ β μ μ ΜΜΕΜΜΜΜΜΜΒΗΗ HHHBBBHMSBBBK! SSSEflABEBfiS! SS9SBBBE SSS&BS8SSB9BSBSB88B&SSBSBSBBBBBHHdHRMHH9BMRBEe

___________ .________ Xft UNSquAL. Xe,____R j_____ J m P To Rd i f Xa + X&
_______ ______________ NA___ Urt&Q O AL Nc. ftg______JtWP To %D i f Na + Nc

_________;___________________________________ ____________________ tlUi» oyMn *><Α ^ _____
___________ |___ __________________________

BSSSSSSSCS 9RSHMBS 9BBBBBSES MHHMRHMBBHMMK SBHBBSSSSSSE&S&SSS&tSHBEBIBSBB SBMBDBB8S9B8BKS Q9MMBBHBS S&BSBEEBS SBERBMMBBSBBBBSBSSBBHMMNMMMNBSBBMBSEBBSSB*

_____________________ Xfl A? A$ Xe ___gft_____ i/p mP * Κ» * f X a » Xe
_ _ _ _________________ Ar f a s αγ T N c I f o \J v m P h Kn * f N & * N c

__ ;__________________ αώΰ*ι*ιι~< Ιά Λ^α *** 4r
________ _________ ___ .___________ «μ »<*μ <^ν η ._________

_____________________Xft___ firtCO g A (iK*m 1 Xe,___ Κη ____J1M 1A b» K9 ^ X a > X c.

_____________________Af* faQ C ,£A Nc. Rn J u m p A * K * * f Na > rfe.• f____________________________ _____________________________________ l A t t W W iffcAt MX* (·___

Figure 1: Alphacode functions
m

ZM2/34.

I

? -11-

Figure 1 (conoluded)? Alphaoode functions.

l1M/M.

-13'

P R A B FUNCTION C D P 0/S
0 X0001 - X0002 MOVED
0 2 N0001 - N0002 MOVED
0 X0001 - N0002 MOVED
0 N0001 - Χ0002 MOVED nearest integer. 0

1 1 X0001 ■ X0002 PLUS X0003
1 N0001 - N0002 PLUS N0003 P
2 X0001 - X0002 MINUS X0003
8 N0001 « N0002 MINUS N0003 s

3 X0001 - X0002 MULTIPlied by X0003
3 N0001 - N0002 MULTIPlled by N0003

4 3 X0001 ■ X0002 DIVIDEd by X0003 P 04 N0001 ■ N0002 DIVIDBd by N0003 .integral part
5 JUMP to R 4
6 If X0002 EQUALS X0003 Jump to R 4
6 If N0002 EQUALS N0003 Jump to R 4
7 If X0002 lB UNEQUAl to X0003 Jump to R 4
7 4 If N0002 lB UNEQUA1 to N0003 Jump to R 4
8 If X0002 lB AS BIO as X0003 Jump to R 4
8 If N0002 lB AS BIO as N0003 jump to R 4
9 If X0002 lB BIGGER than X0003 Jump to R 4
9 If N0002 lB BIGGER than N0003 Jump to R 4
10 count NO 002 UP TO 0003 , Jumping to R 4
11 X0001 - CONSTAnt

+3.14159265 + o °°
11 N0001 - CONSTAnt 0003

12 N0001 and N0002 modify next Inst* N0003 also
18 FINISH
23 Read 0002 DATA Into X0003 onward·
23 Read 0001 DATA Into N0003
24 Batch 0001 Print 0002 RESULTS from X0003 onward Type 0
24 Batoh 0001 Print 0001 RESULT from N0003
25 X0001 · ROOT X0003
8β X0001 - LOO X0003
2$ xoooi - EXP X0003

Figure 2 i Tabulated alphacode funotiona

-C23.01-
LECTURB 023»

DATA PROCESSING- I.
AIM: Summarise the steps in getting a business application mechanised; assess the

importance of each step; and examine the calibre of person concerned in these
steps·

C23.1 INVESTIGATION.
Having been presented with either a department and the general directive to mechanise

it, or a carefully chosen aspect of an established system to put onto data processing
machinery, the person so directed must stand back and view first the whole situation.

This is necessary for the two reasons:-
(a) it is most advantageous to get acquainted at the earliest stage with the terms

in common use in the department under investigation*
(b) no part of a system is complete in itself, so that even if it is the initial

intention to look at only, say, the stock control aspect of a production system, it is
necessary to see how all such aspects fit together.

Therefore the first step is a thorough investigation of :s many aspects of the processes as
are likely to have any bearing on the final mechanised system. This entails finding out
not only what goes on, hut why it happens, and if necessary asking the same questions of
different people to verify what actually does happen.

This investigation should be backed by management in as high a position as possible since
this is the only way of gaining both confidence and co-operation.

The result of all this should be a conprehensive survey of the salient points of the
system, unencumbered by operational details; arrangements should be made to ensure that
any procedural changes during or after this initial survey are notified to the investigators.
C23.2 FORMULATION.

Once the investigation has been completed, there should now be sufficient information
to decide whether the aspect that was originally chosen for mechanisation is suitable because
of its relation to the rest of the business, or, if no decision has been made, to decide
what aspect to tackle.

This means that a particular problem oan be formulated. The problem may be to mechanise
the monthly payroll, or all the payroll, or to examine the machine loading in a
particular shop, or to keep premium payment records in the system, or to consider all the
production aspects of a manufacturing organisation and to integrate all these in one go·
In any case the problem to be tackled is defined·

The preliminary investigation will have provided enough facts, providing it has been
adequately carried out, to make the problem well defined, both itself, and in its relation
to allied problems·
C23.3 ANALYSIS.

So far there need not have been any reference to a particular type of data processing
machine, but the time has now arrived· The problem formulated must be knocked into a set of
logical block diagrams, showing both the information flow and machine operations·

At this stage deficiencies in the specification of the problem will inevitably be
thrown up, requiring re-investigation of the system, and a variety of suitable approaches
to answer the problem will appear· This means that a choice of computing machine may
have to be considered, with regard to their available facilities-paper tape or punched
card input, simultaneous magnetic tape reading and writing or rust· It may mean deciding the
relative merits of available facilities on a given machine - whether to keep a file on
DPCS2

-C23.02
punched cards or on magnetic tape for example*

In any case this analysis will produce one or more suitable schemes which will be
logically sound, practicable on the machinery available, and suitably costed. These schemes
must be able to be sold to whoever is sponsoring the work, so that the costing must be
carefully done. It is not at all easy to assess accurately the financial side of hidden
gains such as savings in stock holdings, nor is it easy to put a price to shortening delivery
periods, so that the places where one hopes to get the most advantages are the least easy
to specify in money terms*

It is not easy to make a very dose estimate of machine running time without a lot
of experience of similar jobs or a great deal of pilot programming, but by and large it
is possible to make a reasonable assessment of the financial merits of any of the suggested
schemes*
023*4 RECAPITULATION.

The result of going through the three stages investigation, formulation and analysis
should be a set of logical block diagrams which have been agreed to by all concerned.
However if the process has not proved satisfactory, it may be necessary to keep going
through the three steps again and again until a satisfactory system is specified; then
and only then is it wise to start programming.

Indeed these investigations may have shown that there is no merit in mechanising at all,
but that a clerical re-adjustment will be enough.
C23.5 PROGRAMMING.

A business application requires a considerable proportion of the effort spent on
it to be other than programming. It is necessary to produce both a clerical procedure
manual and a programme operation manual, the former capable of being used by people
with no computer knowledge.

At this stage, then, when the system has been defined and agreed, the production
of these manuals can proceed in parallel. It is usually the clerical manual which is the
more straightforward to produce, since it is less liable to change during the development of the
system than the programme operation manual which is tied very much to the final programme
specification.

It must not be forgotten, however, that the closer the liaison between the paper
work preparation and the programme inputs and outputs the easier the programming and
tabulation becomes.
C23.6 TESTING·.

Prom this stage on, it makes little difference that the programme under test is
a business one, though it is true that business programmes are usually easier to write,
and harder to get consistent test data for. Mistakes found are usually logical ones of
the system, and thus more in the heart stopping class, so that the testing process can be
quite time consuming.
C23.7 TRIAL RUNNING.

There comes a time when the programmes comprising the system have been satisfactorily
tested, and a process of trial running of the system or parts of it must be inaugurated.
This is the stage at which the clerical and computer procedures are tied together, and
at which both the clerical and machine operational staffs become familiarised with their jobs.

DPCS2

The v ario u s operation al snags w il l be shown up, the stock r u le s in a stock system
can be shown to be v a l id , the th in gs th at have been fo rgo tten can be in corporated , and a
planned turnover begun.

C23.8 ROUTINE OPERATION AMD MAINTENANCE.
No system run3 fo r very long without th ere being a proposed m odification to i t , e ith e r

a s an improvement o r to c a te r f o r a changed exigency in manufacturing p o lic y . The amount
o f e f fo r t requ ired to keep a mechanised system w ell maintained must not be underestim ated; th is

means th a t i t i s im perative to have d e ta ile d and c le a r accounts o f the c le r i c a l procedures,
the programme and p erip h eral o p e ra tio n s, and the programmes them selves. Without th ese
i t i s v ir tu a l ly im possib le to make a su c c e ss fu l change; good w rite-ups mean good running·

C23«9 TIME SCALE.
I t i s o f no value to t r y to sp e c ify p o s s ib le tim es f o r p a r t ic u la r types o f a p p lic a t io n ,

s in ce experience i s not y e t wide enough, but i t i s worthwhile to emphasize where the

bulk o f the work l i e s .

There have been e ig h t s ta g e s sp e c if ie d in g e tt in g a mechanised a p p lica tio n go in g ,
and o f these i t i s the f i r s t three and th e ir re c a p itu la t io n which are the most v i t a l , and
u su a lly the most time consuming. I t cannot be over-emphasised th at i t i s unwise to s t a r t
w ritin g the programme u n t il a su ita b le system has been sp e c if ie d p ro p erly , fo r the c a p ita l
co st o f programme w ritin g and te s t in g i s high and not worthy o f w aste .

Once, however, a system has been tru ly s p e c if ie d , programming should g e t tinder way
a t f u l l speed so th at changes in the manufacturing system during the turnover period
have a s l i t t l e e f fe c t a s p o s s ib le on the programmes to he w ritte n · Programmes should however

be as f le x ib le a s reason w il l allow .

T r ia l running in p a r a l l e l can take lon ger than one f i r s t im agines· Not only do
m istakes show up fo r the f i r s t time a t t h i s l a t e s t a g e , when they are the most time consuming
to r e c t i f y , bu t i t tak es q u ite some time fo r u se rs to g e t accustomed to the system . There
are p e n a lt ie s , however, in running in p a r a l l e l fo r too lo n g ; u n t i l the tim e when i t i s
decided to stop p a r a l l e l running and depend only the mechanised system , the mechanised
sy stem 's records must co n tin u ally be brought in to l in e with those o f the running system .
T his means, f o r example, th at a stock balance f i l e must be brought up to d a te , or a p a y ro ll
record pu t l ig h t w eekly, and th ese a re the more d i f f i c u l t i f the r u le s follow ed on the
mechanised system are more so p h istic a te d than those under th e ordinary system .

Remember, however, th a t the more e f fo r t th a t goes in to the three e a r ly s t a g e s , the
e a s ie r and quicker the l a t e r s ta g e s become.

C23.10 STAFF CALIBRE.
I t w i l l have been apparent th a t not a l l the e ig h t s ta g e s o f m echanisation req u ire

the same type o f person , and there are broadly th ree ca te g o r ie s needed.

The e a r ly s ta g e s need computer minded system s men, who do not n e c e ssa r ily have to be
programmers, but by the a n a ly s is s ta g e programmers a re d e f in ite ly needed. Then a
combination o f machine o perators and programmers to run the t r i a l s a re req u ired , w h ilst the
maintenance and extension o f the system requ ire a combination o f system s men, operators

and programmers·

C23.11 MPHASIS.
I t must f in a l ly be re-em phasised th a t the e a r l ie r s ta g e s a re the most im portant, and

th a t no e f fo r t should he spared on those a sp e c ts .

-023.03-

DFCS2

w

24

-24.01-
LECTURE 24,

MAGNETIC TAPE STORAGE SYSTEM.
NjB. These lecture notes are not meant as a programming manual, but one intended to give
some insight into the Deuce Magnetic Tape Storage System.
24.Ί THE TAPE TRANSPORTER.

24.1.1 The tape handling equipment used with the Deuce Magnetic Tape Storage System
consists of Decca Twin Tape Transporters. The Twin Tape Transporter consists of two tape
decks and and their associated control and drive equipment, on which up to 2,400 feet of
wide magnetic tape may be moved past the reac/write heads under computer control. The tape
may be run in either direction at an operational speed of 104" per second, but the tape can
only be written on or read from when it is going in the forward dire etion, e.g. from the right
hand spool to the left hand spool. Up to 4 twin tape transporters may be connected to Deuce.

24.1.2 About 15 feet from either end of the tape the magnetic oxide is removed from
the surface for about 1̂ - inches leaving a transparent window. The window nearest the left
hand end of the tape is called the beginning of tape mark and the other the end of tape mark.
Only the tape between these two marks is moved under the read/write heads by computer control.
If the beginning of tape mark is sensed by the computer, backward movement of the tape is
inhibited; similarly, Then the end of tape mark is sensed the tape can no longer be moved
forward under computer control.

24.1.3 While the tape is on the tape deck and the tape deck is ready to obey any
order given by the computer, the tape deck is said to be in the remote phase; otherwise it
is said to be inoperable. If a tape deck is selected for use and it is inoperable a signal
is sent to the computer.

24.1.4 In order to provide a warning that an end of tape mark is approaching the
read/write heads and that forward movement of the tape is about to be inhibited, an early
end of tape warning system is provided. If the last start order received was for tape
movement in the forward direction and the end of tape mark is seen by the end of tape
warning photo-cell, a signal will be sent to the computer. This signal, which can be -*
detected by a programmer, will continue to be sent until the end of tape mark is sensed
by the end of tape warning photocell when the tape is moving backwards, or when the tape
deck is taken out of the remote phase.

24.1.5 If it is required that the beginning of a usable section of the tape is under
the read/write head, a rewind signal is sent to the tape deck. Tape will then be spooled
onto the right hand reel at high speed (approx, twice normal tape speed), until the beginning
of tape mark is under the beginning of tape photocell. During initial loading of a deck,
the full spool of tape is normally loaded onto the right hand reel spindle and an empty
tape reel is put on the left hand spindle. Tape is then fed under the reac/write heads and
erase head and is fastened onto the left hand reel. On closing the doors of the deck, the
deck automatically winds the tape forward until the beginning of tape mark is sensed by the
beginning of tape photo-cell.
24.2 THE READ WRITE HEADS.

24.2.1 The writing and reading to and from the tape is carried out using Decca Seven
Channel read/write heads. Six of the channels are used for information, the seventh for
a lateral parity check. The six information digits simultaneously handled by the read/write
heads, one digit per information channel of tape, are known as a character. The lateral
parity digit is written such that there are an odd number of ones across the tape for each
character.

DFCS2

-24.02-

24.3 WORD PAIRS.
24.3.1 When writing, information is sent to D.S.20 (by the programme), and it is

written onto the tape via a buffer store. Programmers have no access to this buffer store,
and so they do not need to bother about it. Once information is sent to D.S.20 the rest of
the writing process is automatic, therefore the smallest unit of information that may be
written is a word pair. If the writing of one word pair has been completed and new
information has not been sent to D.S.20, within a certain time, writing will stop.

24.3*2 When reading, information is assembled in the buffer store and then put into
D.S.20 when a word pair has been read. The information must be extracted from S.20 before
another word pair has been assembled in order that information is not lost.

24.3*3 D.S.20 has storage for 64 binary digits of information, which is not an
integral number of 6-bit characters. Therefore alternative instructions fcr reading or
writing either 10 characters or 11 characters per word pair are provided.

On transferring (i.e. reading or writing) 10 characters per word pair, sixty binary
digits of D.S.20 are transferred, digits P ^ - of 20^ are ignored. On transferring 11
characters per word pair the full 64 digits plus two extra digits are transferred. The two
extra digits are always written as zeros and are ignored on reading back. Effectively, to
the programmer, 11 character transfers transfer only the 64 binary digits of D.S.20.

24.3*4 The ten characters per word pair transfer system is necessary if a tape
printer is to be used, and it also gives compatibility with the 80 column card reader.
In addition to these, up to 10̂ 2 economy in tape may be obtained if character working is being
carried out.
24.4 DEFINITION OF TERMS.

24.4.1 Character - this consists of six binary digits of information which may
represent 0-9. A-Z and many other symbols.

24.4.2 Block. The characters on tape are recorded in blocks. A block is a train
of characters recorded without stopping the tape. The block length is variable in integral
numbers of word pairs.

24.4.3 Block Caps. Since reading and writing may only be carried out while the
tape is travelling at full speed (i.e. 104”/sec) the tape takes a definite time to start or
stop, therefore a piece of blank tape is always produced while the tape is attaining full
speed, and another while the tape is stopping. Thus between two blocks of information there
is a gap. This gap is known as a block g ap and is always less than two inches in length.

24.4.4 Record. A group of successive blocks in the tape is called a record.
24.4.5 Record &ap. This is a programmed space on the tape written before and

after a record.
24.4.6 The use of a record is that it makes it possible to overwrite information

in the middle of a tape without affecting information stored before or aftfcr the record being
overwritten.

DPCS2

■24.03-
24.5 READING AMD SKIPPING·.

24.5*1 It has been explained that between blocks of information there are either
record or block gaps, and the amount of information written in a block is programmed. Reading
however will continue until a block has been read and the following block gap found, after
which the tape will stop. Thus when reading the tape will always stop with the read/write
head in a gap. This also applies when skipping, the skipping facilities provided being -

Skip forward one block (SF)
Skip backward one block (SB)
Skip forward to the next reorod gap (SFR)
Skip back to the previous record gap (SBR)

These skipping facilities are provided so that the tape may be moved until the gap
preceding the next block of information to be read is beneath the rea^write head before the
transfer is called.
24.6 INTERLOCKS.

24.6.1 If a magnetic tape instruction is put into the Deuce Control store and some
> part of the Deuce Magnetic Tape storage equipment is not available for use, such that the

instruction cannot be obeyed, the instruction is interlocked until the equipment is again
ready. The particular cases where instructions will be interlocked are given below.

24.6.2 If a tape deck is selected and the tape deck is connected but not in the remote
condition, no further tape instruction may be obeyed until the tape deck is ready for use*

24.6.3 While writing, any tape instructions will be interlocked until writing is
complete and the tape stopped.

24.6.4 While reading or skipping, tape instructions will be held until the skipping is
complete, but the interlock is released before the tape has actually stopped.

24.6*3 While a record gap is being written on tape no interlocks are provided since
any tape instruction will clear write record gap. However only one particular instruction
should be used to clear write record gap; this is because other instructions may or may not
be obeyed. After it has been cleared n>; further tape instructions can be obeyed until the
tape has stopped.

24.6.6 When a rewind is called, it interlocks any other tape instruction for 230
milliseconds; at the end of this 230 milliseconds the tape deck is deselected and so any other
tape instruction may be obeyed. In fact it is possible to have up to 8 tape decke rewinding
simultaneously.
24.7 GROUP SEQUENCE TRANSFERS.

24.7.1 As was described in section 24.3 information is transferred to and from the
tape via D.S.20·, but this system leaves very little time for carrying out any other work
while doing tape transfers. In order to make more time available for parallel working when
carrying out tape transfers, a facility is available whereby information can be automatically
transferred between D.S.20 and D.L.9 while writing or reading is in progress. This enables
up to 16 word pairs to be transferred between tape and D.L.9 without any intermediate
reference to D.S.20 or D.L.9. These word pairs that are transferred between D.S.20 and D.L.9
without intermediate reference to them are said to comprise a group. Several groups may be
transferred within a block; this transfer is known as a Group Sequence transfer.

DPCS2

-24.04-

24.8 PARITY CHECKING·.
24.8.1 Parity Checking is optional with the Deuce magnetic tape storage system, it being

necessary to obey a check parity instruction before a parity failure can be detected. Only the
parity of a block that has been read can be checked, since while skipping the parity check
circuits are not used. The check parity instruction is of the discrimination type, i.e. if a
failure has been found when the parity check instruction is obeyed then the timing number of
that instruction will appear to have been increased by one; if however no failure has oocurred
the nbrmal next instruction will be taken.

24.8.2 While reading, each character is checked to ensure that together with the parity
bit there are an odd number of ones written across the tape. Also each track of the tape is
checked to ascertain that it contains an even number of ones in the block. (There is a parity
character written at the end of every block which should make the number of ones in every track
even). The lateral parity of the longitudinal parity check character is not included in the
parity checking since it may or may not contain an odd number of ones.
24.9 THE DEUCE ORDER CODE FOR THE MAGNETIC TAPE STORAGE SYSTEM.

24.9.1 The instructions containing destination 24 and which have source numbers
greater than or equal to 16 are used for magnetic tape. The instructions are

16-24 Select tape deck 0
17 - 24 Select tape deck 1
18 - 24 Select tape deck 2
1 9 - 2 4 Select tape deck 3
20 - 24 Select tape deck 4
2 1 - 24 Select tape deck 5
2 2 - 24 Select tape deck 6
23 - 24 Select tape deck 7
24 - 24s read eleven characters/w ord p a ir R1 *
24 - 241 w rite eleven characters/w ord p a ir W1

(P l)24 - 24s Group sequence read eleven character^w ord p a ir R1
(P1)24 - 241 Group sequence w rite eleven characters/w ord p a ir W1

25 - 24s read ten characters/w ord p a ir R2
25 - 241 w rite ten characters/w ord p a ir W2

(P l)25 - 24s Group sequence read ten characters/w ord p a ir R2
(P l)25 - 241 Group sequence w rite ten characters/w ord p a ir W2

26 - 24 Write record gap WG
27 - 24 rewind Rewd.
28 - 24s skip forward one block SF
28 - 241 sk ip forward to next record gap SFR
29 - 24s .skip back one block SB
29 - 241 sk ip backward to previous record gap SBR
30 - 24 Check P arity
3 1 - 2 4 Clear w rite record gap and In ac tiv e .

* This column of letters are the letters engraved under various lamps on the Deuce
console; when a particular lamp is Oil that particular function is being carried out.

DPCS2

/

25

-C25-01-
IEOTUHB C25.

HgHCIHJS3 OP COMMERCIAL ISOGiRAJ.fOTG.
C25.1 INT^ODOCTION.

I propose in this leoture to approach the work of the programmer from the point of view of
a systems consultant, observing what demands he makes of the computer installation, and what
demands this implies for the individual programmer, leading to an examination of a particular
instance.
C25.2 SYSTEM OBJECTIVES.

The systems consultant is concerned with discovering the most effective use of the time,
labour and capital available. To him the computer is a particular device by which in certain
circumstances some large-scale functions can be discharged more economically. The systems
consultant may have to examine the structure of operational sequences, the allocation of functions,
the chains of responsibility, work-flow, office layout, form design, machine utilization and so
forth. Prom his study of these he is to derive suggestions for the more economic provision of
services or products at the most effective time and place. And clearly it is only as instruments

J of such a purpose that data processors can justify themselves to their employers. The term
'data processors' is preferred here in order to draw attention to the facts that nearly all office
and factory work is essentially processing of data, and that the equipment with which we are
concerned is only useful in so far as we can treat the task to be performed as an orderly and
finite sequence of elementary choices and simple data manipulations.

Each of you will be able to name eorne ways in which use of a data processor can provide more
economic management.

(1) Consolidation of functions. In the past administrative considerations may have
required separation of funotions, not merely among different persons but also among
several departments.

(2) Rationalization of procedures. The more comprehensive approach compelled by
preparation for a data processing system should lead to a simplification of the
funotions pattern.

(3) Speeding of control functions, enabling
(i) capital economy through lower stock levels.
(ii) time economy through quicker integration of order into production plans.
(iii) labour economy throu^i more sensitive production control.

(4) Increased reliability of control functions. Mechanised control decisions may be able
to take account of more comprehensive data in selecting appropriate action.

(5) More effective presentation of the data for management decisions· On the one hand
more searching analyses of received data will be possible, and on the other hand only
a more critical selection of special cases will need to be referred to management.
Prediction of trends, costs, delivery dates will be more reliable.

(6) Earlier output or cheaper output - where the whole service or operation is transferred
to the data processor. Here the equipment offers a more efficient use of the time
and capital available for the desired end.

Each of these corresponds to a fruitful field for the work of systems consult
ants.

025.3 SYSTEM ANALYSIS.
Just as the objectives to be realized by data processors and systems consultants are the

same, so we may learn something from their methods of enquiry. It is important that we should

have a good understanding of the processes by which the job has reached the form in which it
comes to the programmer. We should in all cases be prepared to verify that these previous
processes have been carried out oorreotly.

The following catalogue, first designed to be borne in mind when an existing system is being
appraised, is also of direot value to a programmer examining the specification of a new job.

(1) Make sure you understand the purpose and the proposed scope of the programme. But
be prepared to initiate variations in the scope and objectives. Quite probably
some aspects, or seme exceptions, are unnecessarily being held back for speoial
treatment.

(2) Attempt to set down a priori the information you would need for programming the job.
Extend this list wherever information given seems to imply further requirements.
Compare this list in detail with the information provided.

(3) Check information for
(i) accuracy and clarity,
(ii) completeness, i.e. that there are no exceptions,
(iii) validity, i.e. the exact sphere of application of a given piece of information.

Double-cheok all aspects which do not appear reasonable. Where in any doubt note both the doubt
and the possible sources of fuller information.

(4) Be sceptical. The information may, for exatiqple, be based on an ambiguous question*
The enquiry 'How is this job done' has at least five distinct legitimate answersj-
(i) The way the book says it should be done.
(ii) The way the supervisor thinks it is done.
(iii) The way the supervisor tells the employee to do it.
(iv) The way the employee thinks the supervisor wants it done.
(v) The way it is actually dene.

(5) Make sure you know about all the unusual, rare duties which may arise within or on
the borders of the programme's scope.

(6) Attempt to bare available copies of all the forms employed and specimens of all
reports, with analyses of their actual usefulness. Check that the output is required,
is used, and is used in the foim specified.

(?) Record recent and possible future variations in the system.
The aim here is an understanding of (a) the purpose of the present system and (b)

requirements imposed cn the programme. The basic needs at this stage are a clear appreciation
of the assumptions underlying the present system and an insight into the possible and impossible
alternatives at every point.

Any improvements which occur to you must themselves be subjected to the same critical
analysis as the existing pat form.
C25.4 HtOGIbttdME OBJECTIVES.

When the systems consultant feels that he lias a sufficient grasp of the operation under
examination, he will already have developed some ideas as to how it may be re-organised. like·
wise a programmer will by now have some ideas about the general structure of M s programme.
Certain principles have to be borne in mind in shaping the programme. Some may seem obvious, but
often it is the obvious which is overlooked, and often a principle entails questions the answers
to which have not yet been clarified.

(1) The required services must be provided at the right time at mxninum cost.
(2) Functions should be so allocated as to minimise the required preparation, transportation,

co-ordination and paper-work external to the data processor. .

DBDS2 !

-C25.02-

(3) The v.ork of the operator should be as light and as simple as possible. (Conversely,
clear indications of emergency measures should be built in, together with as many as
possible of the useful criteria that the operator may need for choosing his line of
action).

(l) The total time taken should be as low as possible.
(5) The programme logic should be as simple as possible. A modular type of program»

is always preferable where the cost in time is negligible.
(6) A choice where one alternative involves less processing time but more handling may

be influenced by overall machine loading considerations.
(7) The data processor should not be required to provide any service at a cost greater

then the value of that service, e.g. the value of any control should -not exceed
its cost.

(8) Where possible the programme pattern should allow for ease of amendment in the
expected directions of change.

A merit in a programme is its suitability for introduction in parallel with the existing
procedures, and preferably for only a cross-section of the work. This would expose the
programme to a random selection of the exceptional situations under control conditions.
C25.5 IBOGRAi.Ij.tB STHJCTUHE.

When we turn to the construction of the programme there are many useful questions that can
be asked.

(1) Are results obtained at the most convenient points in the system? Can the input and
output requirements be amended profitably?

(2) Is there any input information which could more economically have been derived from
other data?

(3) Where sub-functions make use of common derived data, can programing be simplified
through a rearrangement of the structure?

(4) Can the structure be split into a main sequence and a secondary sequence of functions
which can supply controls for the main sequenoe?

(5) Know the reasons for each step made and the reasons why it is where it is.
(6) Draw and redraw diagrams of the operation structure.
(7) Check how, when and where the variations, exceptions and special cases are to be

dealt with. List the cross-links which lead to and from each of these.
025.6 EROSRAMLffi DESIGN.

In any given cycle of operation of a programme each possible path of control has an
assignable probability, and for any possible allocation of storage and programme space each path
of control in the cycle will take a calculable time. It follows that the optimum solution of
the programmer* s task is theoretically possible for a cycle of operation and for the program»
as a whole.

In practice a programmer will be able to judge which parts of the programme will occupy
a negligible proportion of the operation time and will concentrate on optimizing the more
important parts of the programme. Nevertheless it must be remembered that the program» is a
whole and not a set of separate optimization problems.

The programmer has to resist the temptations both of perfectionism and of trying to write
the programme in the shortest possible time. Generally speaking, any refinement which effeots
a noticeable saving in the final timing will be worth carrying out unless the programme is for
infrequent use.

-C25.03-

Often a major in fluence on the t o t a l operation time vri.ll be some p a r t ic u la r t r a n s fe r tim e,
so th a t the programmer must keep one part o f the equipment running as e f f ic ie n t ly a s p o s s ib le .

Sometimes i t w i l l be n ecessary to programme in depth, keeping Card Input, Card Output,
Magnetic Tape, Magnetic Drum, Paper Tap» and Data M anipulation - o r a se le c t io n o f these - in
sim ultaneous operation , proceeding, so f a r with one le v e l and then turn ing to another le v e l

dam ouring fo r a tte n tio n . Here i t may be d e s ira b le to p ic tu re a ty p ic a l s l i c e o f a c tu a l
operation before deciding on the p r io r i t ie s to be a l lo t te d to each l e v e l 's claim fo r a tten tio n .

With these thoughts in mind we now turn to an insurance f i l e - maintenance demonstration
programme. This programme was w ritten f o r DEUCE M k.II with Magnetic Tape A u x iliary S to rage ,
but without the f a c i l i t y now a v a ila b le f o r group-sequenced tape t r a n s fe r s .

025.7 RDQUIKB.IENTS K>R H&GRAMME.
The P o licy f i l e i s examined, a s i t i s updated, to a sc e r ta in and l i s t those c a se s which f a l l

due fo r premium b i l l in g in a sp e c if ie d month.

Input to the computer com prises: -

(i) the current f i l e on Magnetic Tape (c a l le d the "E x is t in g P i l e ") ,
and (i i) 80-Column card s bearing f u l l d e t a i l s o f the ca ses fo r which some "Amendment" to the

e x is t in g f i l e record w il l be needed.

Each item in the E x is tin g P i le i s a llo c a te d 240 ch aracters on the Magnetic Tape,
corresponding to the information capacity o f three 80-Column punched card s. A n y p o lic y can be
adequately represented by an item o f th i s s iz e . In p rac tice 200 ch aracters would be su f f ic ie n t
in most cases and advantage could be taken o f th i s f a c t to improve the speed o f pro cessin g .
However fo r the purposes o f th is demonstration a f ix e d item length o f 240 ch aracters has been
adopted.

The Amendments may be d ivided in to three ty p e s : -
(i) ‘O f f s ' , requ iring removal o f a p o licy from the f i l e ,
(i i) *0n s‘ , requ irin g in sertio n o f a p o licy in to the f i l e ,

and (i i i) 'A lte ra t io n s ' , requ irin g a lte ra t io n o f some d e ta i l o f a p o lic y held in the f i l e .

For 'O ffs ' the Amendment comprises one card only. Par 'Ons' the Amendment com prises
3 card s in a l l c a se s . For * A lte ra t io n s ' not a ffe c t in g the la t e r p a r ts o f a p o licy -reco rd , only
the f i r s t , o r the f i r s t two ca rd s, a s appropriate , are requ ired .

The l a s t card o f a given Amendment i s designated by an overpunching in column 1 o f th a t
card . A ll Amendment Cards are assembled in P o licy Number order to form the "Amendments P i l e " .

Output from the computer com prises: -
(i) the rev ised E x istin g P ile an Magnetic Tape (c a lle d the "Updated P i l e ") ,

(i i) the record on Magnetic Tape o f those ca ses f a l l in g due fo r premium b i l l in g in the
sp e c if ie d month, (c a lle d the "Renewals P i l e ") ,

(i i i) E rror Cards g iv in g d e ta i l s o f any ca se s where the operation requ ired c o n f l ic t s with
the a v a ila b le records (e .g . O ffs f o r which no corresponding p o lic y i s recorded in
the E x istin g P i le) ,

and (iv) in d ica tio n s on the Control Panel i f card s in the Amendment P i le are found to be out
o f order. In such ca ses the computer w aits f o r appropriate action by the operator#

Each item in the Updated P ile comprises three cards-worth o f information in the same form
a s fo r the E x is t in g P i le . However in the case o f the Renewals P i le only two cards-worth are
recorded u n less the length o f the P ay er's Address demands a th ird . In re sp e c t o f c a se s being
entered on the Renewals P i le a s t a t i s t i c a l an a ly sis i s obtained by Period o f Renewal f a r two

c la s s e s o f p o licy (Funds 1 and 2) .

DH3S2

-C25.04-

The block diagrams (Section 11) should be examined in conjunction w ith the te x t o f
Section s 8 - 10. Diagram 11.2 e x h ib its the normal operation cyole o f the computer programme
w hile Diagram 11.3 shows the in te rre la tio n sh ip s o f the variou s rou tin es in to whioh the programme
i s subdivided in Section s 8 and 10. In diagram 11.3 the se t t in g o f one block in to another

in d ica te s th at i t may function a t th at point a s a subroutine o f the la rg e r b lock . Where
’ CARD INHJT' occurs a t the lower r igh t hand com er o f another block i t i s to be regarded a s an
a lte rn a tiv e e x it from th a t b lock, su b ject to the condition in d ica ted by the a ste r isk #

In the in te r e s t s o f o la r i ty no attem pt i s made to i l lu s t r a t e the e f fe c t o f the "Data
In co rrect" Routine in diagrams 11.2 and 11 .3 , nor th a t o f the "P a i l" Routine in diagram 11 .2 .
I t i s hoped th at the te x t o f Section s 8 and 10 g iv e s s u f f ic ie n t explanation on these p o in ts .

C25.8 GENERAL DESCRIPTION OF H m tM JE .

Programme Input reads in the programme, s to r in g some p a r ts on the Magnetic Drum.

Entry checks the in d ica tiv e d ata a t the s t a r t o f the E x istin g P i le (E - P ile) Tape and

records in d ic a tiv e d ata at the s t a r t o f the Updated P ile (U - P ile) and Renewal P ile (R - P ile)
Tapes. The requ ired month i s in se rte d v ia the Control Panel and the programme le a d s to

Amendment P ile (A - F i le) Read which, i f d ata from l e s s than 3 cards are in re se rv e ,
r e fe r s to

Card Incut which, (i) c a l l s a fu rth er 80-Column card read operation

(i i) s to re s the d ata from the l a s t card read , f i r s t in the h igh speed
s to re and then on to su ccessive track s o f the magnetic drum when

approp riate ,

and (i i i) a d ju s ts the card reserv e count by u n ity .
When a t l e a s t 3 cards are in reserv e A -P ile Read prooeeds. D e ta ils o f 1 ca se a re taken

to the A-Store from the developing A -F ile on the Magnetio Drum (x See notes 1 and 2) . (I f
'the p o licy number o f th is case i s lower than the previous one,

Data In correct o f fe r s the operator the a lte rn a tiv e s o f

(i) ignoring th is case o r

(i i) ' reprocessin g from the point where t h i s case should occur, e ith e r by follow ing i t
from there from the A -F ile on the Magnetio Drum o r by oorreotin g the order o f the card s

and reload in g the A -P ile .)

(I f A -P ile Read was entered from Re-entry 3 the programme sk ip s to O rganisation (P art 1) .

but otherw ises-)

Re-Entry 2 fo llow s, leading to

Tape Read whioh reads d e t a i l s o f 1 case from the E -P ile Tape to the E-Store (x See note 1)<

O rganisation (P art 1) then compares the p o licy numbers o f the E -Store and A—Sto re ca ses
and, i f the E -Store p o lic y number i s the le s s e r , s e le c t s in stru c tio n s fo r recording th at ease
on the U -F ile Tape and s e le c t s d ata from th a t ease f o r Premium B i l l in g T est.

O rganisation (Part 2) i s entered i f the E-Store p o licy number i s not the l e s s e r .
In stru c tio n s and d ata appropriate to the A-Store ca se are se le c te d fo r the U -File w rite operation
and Premium B il l in g T e s t , provided th at the p o licy number re la tio n sh ip i s co n sisten t w ith the
type o f amendment requ ired . I f an error i s suspected

F a i l i s used to punch out d e ta i ls o f the suspect record , leading fo r 'o f f s ’ only to
Re-entry 3 · In the case o f ’O ffs ’ the programme now sk ip s to Re-entry 1«

-C25.05-

Tape Y/rite makes the appropriate entry on the U -File Tape· (ae See notes 1 and 3) ·

Premium B il l in g Test next examines whether th is case i s due fo r renewal in the required

month. I f n o t, then the programme sk ip s to a Re-entry (l , 2 o r 3) p rev io u sly se le c te d by
O rganisation a s being appropriate to the type o f operation developed th ere .

B i l l in g Accumulation, i f th is case i s due fo r renewal, accumulates the premium in binary
pence by renewal p eriod and fund.

Tape Write en ters the case on the R -F ile Tape (a See note 1) and le a d s to th e Re-entzy
prev iously se le c te d by O rganisation as being appropriate to the type o f operation developed th ere ·

Re-Entry 1 le a d s to A -F ile Read.

Re-Entry 2 le a d s to Tape Read.

Re-Entry 3 lead s to A -F ile Read, but then sk ip s to O rganisation ·

NOTE 1 The programme t e s t s a t these po in ts whether the card input i s in operation . I f

no,t» Card Input i s entered before the lin k to the next sec tio n i s obeyed.

NOTE 2 I f the new case fo r the A-Store has a pxxLicy number l e s s than i t s predecessor the
programme d iv e r ts to Data In co rrec t, which (a t the option o f the operator) -

(1) ignores the case and proceeds to the next one or

(2) accepts the case , turns bade the f i l e s to the co rrec t p lace and e ith e r

(a) prepares to take again a l l l a t e r numbers from the A -F ile or

(b) prepares to r e s t a r t the A -File a s from t h i s point freta the Amendment C ards.

NOTE 3 I f the f in a l case has been d e a lt v/ith, the programme here d iv e r ts t o F in a l (F a r ts 1
and 2j which reconverts the b i l l in g accumulations to s t e r l in g , records them on th e R -F ile and
w rites end o f f i l e in d ica tio n s.

025*9 STORAGE USED.

Magnetic Taps deck 0 c a r r ie s the E x is tin g F i le (E -F ile) Tape.
*' " " 1 " ·» Updated F i le (U -File) Tape.
" " " 2 " " Renewals F i le (R -F ile) Tape.

Magnetic Drum track s 246—250 carry the Data In correct Routine
in stru c tio n s .

Magnetic Drum track s 251-253 carry the F in a l Routine in s tru c tio n s ·
" " " 254 c a r r ie s a copy o f Delay Line 3 ·

” " n 255 " the F a i l Routine in stru c tio n s .
Mercury Delay Lines 1-6 (A ll m es), 7 and 9 (mes 24-31) and 8 and 10 (mes 16—23) carry
the Main Programme.
Mercury Delay L ines 7 and 9 (mes 0-23) and 8 (mos 0-15 and 24-31) carry the Entry
Routine but are c leared a t the end o f th at Routine.
During the F i le uo-dating Mercury Delay L ines 7 (mes 0-23) and 8 (mes 0-15 and 24-31)»
togeth er c a lle d the E -Store , carry the item from the E x istin g F i le cu rren tly under
consideration and Mercury Delay L ines 9 (mes 0-23) and 10 (mes 0-15 and 24-31) t
together c a lle d the A -Store, carry the item from the Amendment F i le curren tly under

consideration .
Mercury Delay Line 11 i s the b u ffe r-s to re a l lo t te d to d ata being tran sfe rred to o r from
the Magnetic Drum. Mercury Delay Line 12 i s the b u ffe r-s to re a l lo t t e d to d ata being
tran sfe rred to o r from the Card Input/Output. Magnetic Drum Tracks from 0 onwards
sto re the Amendment F i l e a s i t i s received from Delay Line 12.

■nmejo

-C 2 5 .0 6 -

C25.10DESCRIH?I0N OF EROSRJJ.g.IE SECTIONS.

(a) Entry Routine*

Write record gap and d escrip tio n o f f i l e on Tape decks 2 and 1 . V erify
d e scr ip tio n o f f i l e on tape deck 0 . S e t tip i n i t i a l lin k in s tru c tio n s , i n i t i a l
magnetic drum read and w rite in stru c tio n s · Read requ ired month from Control ifetnel.
I n i t i a t e reading o f 1 s t ca rd · R estore magnetic doom read and w rite heads to block

p o s it io n 0 , C lear D .L 's 7 and 9 (mcs 0 -23), 8 (mcs 0-15 and 24-31) and 11#

(b) Card Input Routine.

T est whether the card ju s t read i s the F in a l Item card marking the end o f the
f i l e · I f so , p lan t la rg e n egative card count marker, d e c a ll read er, and overw rite
'o a l l read ' in stru c tio n s with dummy in stru c tio n s · I f not the f in a l item , d iscrim in ate

bewtween 1 s t card , 2nd card , 3rd card and s in g le card groups. I f s in g le card group,
o r 3rd card , c le a r the ' l a s t card o f group' d esign atio n recorded from column 1 o f
the card . I f 1 s t card , c a l l fu rth er card read to D.L. 12 mcs 16-31 (= sto re fo r
2nd c a rd s) . I f 2nd Card, s in g le card group, or 3rd card -

(i) c a l l fu rth er card read to D .L.12 mcs 0-15 (= s to re fo r 1 s t /3 r d c a r d s) ; then

(and a lso f o r F in a l Item)

(i i) t r a n s fe r DL12 to DL11 and thence to the next track o f the Magnetic Drum,
sh if t in g w rite head b locks i f n ecessary , and

(i i i) c le a r IL12 mcs 1 6—31 (s to re f o r 2nd c a rd s) . For a l l c a se s reduce card count
marker by 1 (card count marker commences a t + 2).

(°) A -F ile R eal Routine.

T est whether card count marker i s n egative (i . e . -whether e ith e r 3 card s a t
l e a s t are in reserv e , o r the card input operation i s com plete). I f marker i s
p o s it iv e -

(i) a aw ait end o f current card read operation ,

(i i) c a l l Card Input Routine and

(i i i) t e s t card count marker again , repeatin g a s n ecessary .

I f marker i s n egative in crease i t by one and read next track o f magnetic
drum to DL11 , sh if t in g read head blocks i f n ecessary . I f the new p o licy number i s
the l e s s e r the programme en ters D ata Incorrect Routine. I f track contains 2 cards
in crease card count marker by 1 , t r a n s fe r data to the f i r s t 2 sec tio n s o f the A-Store
and t e s t whether th is amendment i s a 2 card se t (X overpunching in c o l . 1 o f 2nd

c a rd) . I f n o t, in crease card count marker by 1 , read next track o f magnetic drum
to DL11, s h if t in g read head blocks i f n ecessary , and tr a n sfe r d a ta to the 3rd. sec tio n

o f the A -Store. I f amendment i s a 1 card s e t , t r a n s fe r contents o f DL11 to the
f i r s t 2 se c tio n s o f the A -Store. In the case o f 1- or 2- ceurd amendment s e t s c le a r
the 3:rd sectio n o f the Λ-S to re . Test whether the card input mechanism needs priming
and i f so r e fe r to Card Input Routine before obeying Unit. (Entry to th is routine
from the Entry Routine i s a t the point marked (x) .)

NOTE: As the time taken by th is Routine exceeds the time margin within which
re c a ll in g the card reader ensures continuous running, temporary measures a re taken
during th is routin e to m aintain the continuous running.

-C25.07-

(d) D ata In correct Routine.

An in d ication i s given on the con tro l panel that the l a t e s t p o licy number taken
from the A -F ile i s le e s than the previous number in th at f i l e and the machine aw aits

se le c tio n o f one o f the follow ing options by the o p era to r :-

(1) Overwrite the new item with the next follow ing item from the A -F ile , then lin k
to the Tape Read an the O rganisation Routine a s approp riate .

(2) Set back the E - , II-, and R -F ile s to the block gap a f t e r the l a s t item having
a p o licy number l e s s than th i s new A -File number, complete the A -F ile Rec.d

operation and then e ith e r
(a) s e t back A -F ile read in stru c tio n s to the track having the f i r s t p o licy

number g re a te r than th is A -F ile number and r e f e r to Re-entry 2 , or
(b) s e t back A -F ile w rite and read in stru c tio n s to track 0 , s e t back card

count to +2 and r e fe r to Re-entry 2.

(e) Tape Read-Write Routine.

According to the n ature o f the in stru c tio n s p rev io u sly prepared f o r th is

rou tin e,

(1) read a block o f 24 word p a ir s from the E -F ile Tape v ia DS20 to the E -S tore , or

(2) w rite a block o f 24 w ord-pairs on the U -F ile Tape v ia DS20 either from the

E -Store o r from th e A -Store, o r

(3) w rite on the R -F ile Tape a block a s sp e c if ie d in (2) , o r

(4) w rite a block o f 16 word p a ir s on the R -F ile Tape v ia DS20 e ith e r from the f i r s t
2 section s o f the E-Store o r from the f i r s t 2 sec tio n s o f the A -Store. Wher

a block i s being w ritten on the R -F ile , a lte rn a tiv e (4) ie p re fe rred to
a lte rn a tiv e (3) u n less the address s p i l l s to the 3rd sec tio n o f the sto re
(a card 3) . T est whether the card input mechanism needs priming and i f so

r e fe r to Card Input Routine before obeying lin k .

The Note to the A -F ile Read Routine ap p lie s here.

(f) Re-entry 1.

This lin k p lan ts a lin k fo r Re-entry 2 and then en ters the A -F ile Read

Routine.

(g) Re-entrv 2.

T his lin k p lan ts a lin k fo r the O rganisation Routine, prepares the Tape
Read In stru c tio n s, and then en ters the Tape Read Routine.

GO Re-entry 3.

T his lin k p lan ts a lin k fo r the O rganisation Routine, and then en ters the

A -F ile Read Routine.

(j) O rganisation Routine (Part 1)<

The Re-entry lin k fo r Re-entry 2 i s prepared. The Due Date and Premium
Period sp e c if ie d in the E -Store ca se are noted in T .S .16 . The quantity (E-Store
P o licy No. minus A-Store Sb licy N o.) i s c a lcu la te d in DS21 · The p a r ity check on the
tape-read operation (i f any) i s now a v a ila b le and i s consulted. I f there has been
a p a r ity f a i lu r e provision i s made fo r re-read in g the su spect block. U nless the
E -Store P o licy number i s l e s s than the A-Store number, P art 2 i s now entered.

-025·08-

I f the K-Btore No, i s the l e s s e r , in stru c tio n s fo r tape w rite on the U -Pile Tape from

the E-Store are prepared, the E-Store case Fund and Address S p i l l in d ica tio n s are
noted in T .S .1 5 and the Premium in D .S .1 9 . The Note to the A -Pile Read Routine

a p p lie s here,

(k) O rganisation Routine (P art 2) ,

The Re-entry lin k i s amended fo r Re-entry 3 and the A-Store ca se Due Data and
Premium P eriod recorded in T .S . 16, In stru c tio n s a re prepared fo r Tape w rite on the
U -F ile Tape from the A -Store. I f the amendment i s an "O ff" the routine t e s t s th at

E -Store and A-Store p o lic y numbers are equ al. I f they a re equal a lin k to Re-entry
2 i s planted and the A—P ile Read Routine entered . I f they a re unequal (i « e , i f the
A-Store No. i s the le s s e r) an in d ica tio n f o r Re-entry 3 i s p lan ted and the P a il
Routine entered. I f the amendment i s an "On" th e rou tin e t e s t s whether the A-Store
contains the f u l l 3 ca rd s. I f i t contains l e s s than 3 card s appropriate t r a n s fe r s
are made from the E -Store to the A -Store. I f the "On" i s 'A lte ra tio n 1 and the
p o lio y numbers are unequal, o r i f the "On" i s 'New busin ess * and the p o licy numbers
a re equal, an in d ication fo r retu rn to O rganisation Routine (P art 2) i s p lan ted

' and the P a i l Routine entered. I f the O n' i s 'A lte ra tio n * and the p o licy numbers
a re equal the Re-entry lin k i s amended fo r Re-entry 1 . I f th e ca se i s the P in a l
Item a lin k to P in a l Routine i s planted , appropriate t r a n s fe r s are made from DL's
7 and 8 to DL's 9 and 10 and the routine checks th at the p o licy numbers a re equal
Por a l l "0ns" the A-Store Fund and Address S p i l l in d ica tio n s a re noted in T .S .1 5

and the Premium in D .S .19 ·

(l) P a i l Routine.

The P a i l Routine in stru c tio n track (No. 255) i s read from the magnetic drum to
DL. 3 v ia Did 1. When the current card read operation i s complete the contents o f
o f Did 2 a re tran sfe rred to DL11, The contents o f the Λ-Sto re (i f th e e rro r i s an
"O ffs" or an "A lte ra tio n " e rro r) o r o f the E -Store (i f the e rro r i s a "New B usin ess"
e rro r) a re punched on to 3 cards v ia DL12. I f the error i s a "New B u sin ess" e rro r
the 1 s t 5 columns o f the 1 s t card a re overpunched X and th e Re-entry lin k i s amended
f o r Re-entiy 1 · The former contents o f DL12 are re - in s ta te d from DL11, the Main
Programme contents o f DL3 are re - in s ta te d from track 254 o f the Magnetic Drum v ia
DL11 and the Drum Read head block i s returned to i t s former p o s it io n . According
to the in d ica tio n p lan ted the P a i l Routine le ad s e ith e r back to the O rganisation

Routine (B art 2) o r to Re-entry 3.

(m) Premium B i l l in g T est Routine.

In stru c tio n s a re prepared f o r tap e w rite on the R—P ile Tape from whichever
s to re i s appropriate (the E-Store u n less o rgan isation Routine (Part 2) was entered) ̂
By examining the v alu e 'Due Month - Required Month* and the premium period a d ec isio n
i s made a s to whether premium b i l l in g i s requ ired in th is c a se . I f premium b i l l in g
i s not requ ired t e s t whether the oard input mechanism needs priming and i f so r e fe r

to the Card Input Routine before obeying the lin k to the se le c te d Re-entry. I f
premium b i l l in g i s requ ired , t e s t whether address s p i l l i s in d ica ted and i f not
in d icated amend tape w rite in stru c tio n s to lim it the block to 16 word p a ir s .

-C25.09-

(n) B i l l in g Accumulation Routine,

The premium in Binary Coded S te r lin g i s converted to a premium in
Binary pence. The in stru c tio n s which:

(1) add the premiums so far accumulated to this premium and
(2) s to re the new accumulated to t a l are each in turn amended to s e le c t th e minor

cycle in which i s sto red the to t a l appropriate to the premium period
and fund o f th is case and then obeyed.
The Note to a A -Pile Read Routine a p p lie s h ere .

^ P in a l Routine (P a rts 1 and 2) .
<q) , .

The Final Routine instruction tracks (251-3/ are read from the
Magnetic Drum to D.L.'s 2, 3 and 4 via D .L .11 , D .L .6 i s cleared to accept
the Binary Coded Sterling equivalents of the premium billing accum ulators·
P art 2 i s re fe rre d to to perform the conversions from Binaxy Pence to Binary
Coded S te r lin g and to s to re the r e s u l t s in D .L. 6 . Returning to P art 1
the Routine w rite s a block o f 11 word p a ir s on the R -F ile Tape v ia DS20
comprising a l a s t block marker and the 10 accumulated b i l l in g t o t a l s * End
o f P i le markers and f in a l record gaps a re w ritten on the R -F ile and U -File
Tapes which are then rewound. The programme ends by switching on the Output

S t a t ic i s o r l ig h t s on the contro l pan el·

-C25.10-

PPCS2

25/11 BLOCK DIAGRAMS Q-%5H

25/II-I SYSTEM FLOW OF INSURANCE DEMONSTRATION PROGRAMME >

FILE MAINTENANCE AND FORMATION OF RENEWAL FILE

Cv2 5 · > ί

!

A Th· diagram is simplified. 6y i^noivt^ the effect of incorrect or out of Offlfr A· CatcLs

25/11-2. LOGICAL OPERATION OF INSURANCE DEMONSTRATION PROGRAMME :-

FILE MAINTENANCE AND FORMATION OF RENEWAL FILE

-CZSI5

25/11-3 LOGICAL STRUCTURE OF INSURANCE DEMONSTRATION PROGRAMME

FILE MAINTENANCE AND FORMATION OF RENEWAL FILE

26

-26.01-
LECTURE 26.

FIXED POINT AND FLOATING POINT ARITHMETIC.
26.1 INTRODUCTION

The following two columns of numbers are identical in meaning:
30,000,000,000 3 x 1010

0.001118 1.118 x 10"·5
3.142 3.142 x 10°

1760. 1 .760 x 10^
-O.5 -5 x 10 1

These numbers cover a veiy wide range; if they were to be stored in a computer in their
natural form (left hand column) storage registers of at least 17 decimal digits capacity would
be required. However, none of the numbers is given to more than 4 significant figures, as can
be seen in the right hand column. We see here how a register of only six decimal digits (four
for the ’’Mantissa” and two for the exponent of the radix 10) can accomodate the same range of
numbers as a much larger register. The point is that in the left hand column the decimal point/
is fixed in position, and non-significant zeros have to be inserted; in the right hand column
only the significant figures are expressed, together with an integer of one or two digits to
indicate the position of the decimal point. We say the numbers are expressed in FIXED POINT
and FLOATING POINT form, respectively.

Let us consider the problem of confuting with numbers expressed in the two forms. There
is little difference in multiplication or division between the two systems: but for addition
or subtraction floating point numbers have to be expressed with a Common exponent and the
result normalise^ whereas fixed point numbers can be added or subtracted directly.

In the great majority of Scientific calculations we find ourselves in difficulties due to
the finite size of the computing registers. If the decimal (or binary) point is fixed, and the
numbers involved in the calculation have a wide range of values, there may be a considerable
loss of significant figures at the lower end of the range, or a danger of the variable exceeding
the register capacity, or, in extreme cases, of both. Pure fixed point working is thus
impossible in these cases.

The solution to the difficulty depends very much on the programmer's prior knowledge of
the behaviour of the quantities in the calculation.

If he can predict accurately upper limits for every intermediate quantity in the
calculation, he can programme shifts of the binary point at appropriate stages so that, on the
one hand, his numbers do not exceed capacity, nor do they lose significant figures by being too
far down in the register. The programmed shifts will be the same whatever particular data are
being processed at the moment; in other words, for any one operation, the binary point will be
in the same position whatever numbers are involved. This system is the one usually referred
to as FIXED POINT working, because the programmer fixes the position of the binary point for
each operation.

If, however, the programmer cannot predict the behaviour of the numbers, or if the
variables are known to take such a wide range of values that any standard shifting arrangement
would be unsatisfactory, then FLOATING POINT working is adopted. In this system use 1* made
of subroutines to Calculate an appropriate shift for each operation; each number must therefore
carry with it an exponent to indicate the position of its binary point.

The two systems will be described more fully below.
In what follows the following notation is used consistently:

x (small letter) - a number to be represented in the computer.
X (capital letter) - the integer actually stored (DEUCE is regarded as operating

exclusively on integers).
26.2 FIXED POINT WORKING ON DEUCE

In general in normal fixed point working we have the relation x = X.2-p where p is an
integer, constant for the variable x. For maximum accuracy, p will be chosen so that for the
upper limit of x, X will be on the verge of exceeding capacity. We say either x is stored to
p binary places (which means that the binary point ie p places up from the lower end) or that
we store X = x. 2P and talk consistently about the numbers as integers. The latter idea is
simpler, and is adopted here as far as possible.

In general p is never stored explicitly in the machine, but is implicit in the shifting
instructions of the programme, as the following examples will show.

(0 Shift
The instructions 24 - 14, (n m.c.) and 21 - 22,(2n m.e} (TCB off) w ill shift a number U]3

n places in 14 or 21. However, care must be taken that the most significant digit of the number
is not "spilt" by being shifted too far.

In shifting down there is the problem of round off. The following sequences shift down a
single length number n places, with correct round off:

X - 14 X - 21^
23 - 14(m-l)m.c. 22 - 21 (2n m.c.) (TCB off)
14 - 13 212~ 232
27 - 25 21^- Y
23 - Y

(y = X.2”n, rounded off to nearest integer)
(2) Addition and Subtraction.
Consider operations on x = X,2”p and y = Y.2_<1 giving results z = Z.2""r.
The simplest ease is when p = q = r.

X - 13
Y - 25/26
13 - Z

If p = q / r the same sequence will do, but it must be followed by a shift U]o of
(r - p) places (if (r - p) is negative this is of course a shift down).

There is a possibility of X + Y exceeding capacity; this can be avoided by limiting the
most significant digit of each to the P^q position.

If p / q vje have to shift down whichever of X,Y is associated with the higher of p,q, not
forgetting the round off. The shift is (p - q) places. Addition or subtraction is then
possible; another shift, is required if min (p,q) / r. If this shift is down a round off is
necessary.

- 2 6 .0 2 -

DPCS2

-26.03- Ij
(3) Multiplication.
(Sign connection assumed to be understood).
The multiplier multiplies the integers in 16 and 212 producing a double length result

in 21. t

With the notation as before, we have
X.Y = xy.2p + (l = Z.2P + 1 = Z.2p + * - r in 2 1 ^

i.e. Z.2P + <1 " r - 32 in 213
We have Z (the required result) in 21^ if we shift up (32 + r - p - q) places (TCB off).

(4) Division.
The divider divides the integer in 21^ (X) by the integer in 16 (Y) and gives the integer

|.231 in 212
Now, f . 2 31 = J.231 + P “ <1 = z .231 + p - * = Z.231 + p “ 1 " r.

Therefore, to give’ the required result Z the number in 212 must be shifted down, with round
/ off, (31 + p - q - r) places.

Warning.
This shift must be done with TCB still ON.
The detailed rules about the divider, given elsewhere, must be carefully observed, or

a division subroutine used.
For same useful remarks on multiplication and division subroutine, see R.A, Smitl̂ DEUCE

News No. 26. (the thick grey-covered book).
26.3 FLOATING POINT WORKING ON DEUCE.

The use of floating point subroutines makes it unnecessary, for most purposes, to think
about shifting, binary points, exceeding capacity, and scaling factors for reading and punching.

The basic idea is that every number x is represented in the machine in two parts,
corresponding to the x and p of the previous chapter. In one scheme these two parts are exactly
x and p as previously defined, but in others the two parts are defined differently. Precise
definitions are given in the following paragraphs.

In any floating point scheme the subroutines treat each quantity on its own merits and
deal with shift, limits and round off accordingly.

For each scheme there is a normalised form. The read routines take numbers punched in
STANDARD FLOATING DECIMAL (that is, such that x = oC.10^ , where 1 ^ |oc(< 10 and
ji is an integer) and leave standard binary floating numbers in store. Each arithmetical
routine takes standardised numbers and produces standardised results. There is usually a
subroutine called PREPARE which takes a non-standard number and standardises it. It is usually
possible to punch standard deoimal numbers.

(1) Standard Floating Binary (s.f.b.)
A number n is represented by (a,b) such that

x = a.2̂
and -1^ a <- £
or a = 0 (in which case b = 0 also)
or £ £ a <1
and b is an integer.

a is stored to 30 b.p. in an odd minor cycle (i.e. the integer a.23^ is stored)
b is stored as an integer in an adjacent even minor cycle.

A simpler way of remembering the hints on a is this: the most significant digit of a
is always P^q> except of course when a = 0.

The recommended subroutines are A13P to'Al6F. However it may be necessary to use an
older set to fit in with some higher order subroutine (e.g. G03F). Care should be taken
since these older subroutines may contain subtle errors. The following read and punch
subroutines are recommended:

R19F R22F R22F/-I
PI OF/2 P13F/4

Standard floating arithmetic is used in ALPHACODE.
(2) Semi-floating Binary.
Standard floating binary numbers occupy two complete words each.
V/here space is valuable, and where accuracy to more than 6 significant decimal figures .

is not required, SEMI-FLOATING BINARY can be used: ("semi" refers to space requirement, not
to "floating").

The exponent b is restricted to 10 digits (i.e. -512 b < 512) and these replace the
bottom 10 digits of a, which is rounded off at this point.

standard f.b. ̂ even
a odd

P P P P
* J________* 1 0 *11_____________________ * 3 2

semi - f.b. b a |

The limit on b is not restrictive; the loss of significant figures is of greater
importance. The operation of semi floating binary is slower than that of s.f.b. since
packing and unpacking are necessary.

(3) Block-floating Binary (Scheme B)
This is another space saving compromise, but without the loss of accuracy of semi-floating

binary. It relies for its success on the fact that normally the elements of a matrix (or
other array) have the same order of magnitude (because, for example, they have the same
physical meaning -pressures, stresses, coefficients, etc.).

Each element x̂ of the array is represented by its own X̂ ; but there is only one p
for the whole array. The value chosen for p is such that the most dignificant digit of the
element (X̂) of longest modulus is (c.f. notes on standard floating binary).

In scheme B matrix convention, an array of m,n elements (m rows, n columns) is stored
in nm + 4 consecutive minor cycles of the drum, beginning with m.c. 0 of a track, as follows:

1st track, m.c. 0. 'Σ .’Σ .

m.c. 1. m Pl7
m.c. 2. n
m.c. 3. P
m.c. k · X,.,
m.c. X,2

etc.
(>.h is the literal sum of the next m. n. + 3 minor cycles).

- 2 6 . 0 k -

DPCS2

I
1

- 26. 05- I

The re la tio n sh ip s between x , X, p i s as fo llow s:

x . , = X. . .2 _p.ij ij
(p i s the number o f b inary p lace s to which x . . are s to r e d) . I

26 .4 FLOATING AND UNFLOATING A NUMBER.

(1) When working in s . f . b . i t i s sometimes necessary to "prepare" (o r norm alise) a ,

f ix e d poin t number to s . f . b .

Suppose the number i s x = X.2 P x i s stored to p b .p .
b »

We require x = a . 2
where -1 $ a < * i
or a = 0
or ^ £ a < 1

We have X and we know p . We requ ire a , b

and a .2° s X .2 p

therefore a = X.2 ^ b
—30Now a e A.2 where A i s an in te g e r ,

therefore A.2 ^ = X.2 p b
therefore A = X.23*"* p b

Therefore the s h i f t ujj to produce A i s

a = 30 - p ** b

th erefore b = 30 - p - s

Where s i s the s h i f t U£ required to bring the most s ig n if ic a n t d ig i t to the

p o s it io n .

The follow ing sequence o f in stru c tio n s t e s t s whether the most s ig n if ic a n t d ig i t o f TS 14

i s a P3Q

2 4 - 1 4
24 - 15
26 - 27

No Yes

(2) The converse problem may a lso occur. We have a standard f lo a t in g binary number,

x = A ,2”^ + b and we wish to produce
n = X,2*"p where p i s sp e c if ie d .

We have X.2-5 s A.2“30 + b
therefore X = A , 2 3 0 + b + p

Therefore the s h i f t down i s s = 30 - b - p p la c e s .

Note th at we cannot have s < - 1 (i . e . we cannot s h i f t U£ more than one p lace) because
th is w ill cause the most s ig n if ic a n t d ig it to be l o s t . A s h i f t up o f 2 p lac e s i s , however,
th e o re tica lly p o ss ib le in the case o f unsigned numbers.

26.5 POINTS TO CONSIDER.
Fixed poin t working i s f a s t in operation,economic in data storage but i s d i f f i c u l t to

programme (and programmes are d i f f i c u l t to modify), requ ires knowledge o f behaviour o f a l l

v a r ia b le s and interm ediate q u an titie s, lo se s accuracy i f a v ariab le has a very wide range.

S . f .b . working i s simple to programme, requ ires no knowledge of behaviour o f q u a n tit ie s ,
i s good fo r problems where wide ranges are involved but i s slow in operation (e sp e c ia lly add,

su b tract), requ ires double storage space.

Semi f lo a t in g binary working needs no more space than fix e d but gives f a r l e s s accuracy
and i s a l i t t l e slower than s . f . b . There i s a s l ig h t danger o f exponent s p i l l .

A ll the above assumes th at s in g le length working i s su f f ic ie n t ly accurate fo r the problem.
I f i t i s not double length working may be necessary , but th is i s beyond the scope o f the

p resen t note.

-26.06-

DPCS2

-026.01-
LECTURE 26.

MAca-rmo tape file uedating»
A. OEMSBAT. mWRTnnJtAriaWS OF FILE UPDATING ON MAGNETIC TAPE.
026.1 Outline o f Method.

Routines may be expected to take something l ik e the follow ing form :—

The standing f i l e Contains d e t a i l s needed f o r re feren ce ; i t i s never amended bn the

routin e run, though l ik e a l l works o f reference i t needs to be rev ised p e r io d ic a lly .

The balance f i l e contains current inform ation su b jec t to change during the updating run.
The whole f i l e i s rew ritten , incorporating the changes which a r i s e , and the updated balance f i l e
beoomes the input fo r the next run.

The p rin t tape oontains the output which i t i s desured to p r in t a t once in the order in
which i t comes from the updating run, w h ilst the dump tape contain s output which req u ire s fu rth er
p rocessin g or ord erin g , o r i s to be h eld back and p rin ted a f t e r the p r in t ta p e .

Example 1.
On a pu b lic u t i l i t y b i l l in g run, the v ario u s tap es might w ell co n ta in :-

Standing f i l e : (fo r each custom er): Account number,
Marne and ad d ress ,
Key to s c a le o f charges a p p licab le ,
D e ta ils o f Hire Agreements.

Balance f i l e : (fo r each custom er): Account number,
Cash due or overpaid,
D e ta ils o f current Hire Rirohase Agreements and
amount outstanding thereon,
Sundry s t a t i s t i c s .

T ransaction tap e : (each tran sa c tio n): Account number, and d e t a i l s o f e i th e r :-
(i) Meter reading,

o r (i i) Cash p a id
or (i i i) New Hire Fhrchase Agreement.

P rin t tape : (f o r each customer b i l le d) : Account number,
Name and ad d ress,
Present and l a s t m eter read in gs, consumption, ̂
r a te and extension ,
Amount due on Hire Agreements,
Amount due and remaining outstanding on Hire
Purchase Agreements,
Balance brought forward,

T o ta l due.

Dump tape : Reminders o f accounts overdue;

Q ueries;
S t a t i s t i c s o f variou s k in ds.

Notes on Example 1. (i) The d e ta i l s given are fo r i l lu s t r a t io n only and are by no

means comprehensive.
(i i) P e rio d ica lly an e x tra run would be needed to r e v ise the

standing f i l e .

Many v a r ia t io n s a re p o ss ib le upon th is p a ttern , and w ill be found in p ra c tic e . Thus i t
w i l l sometimes pay to con solidate the standing and balance f i l e s in to a s in g le record as in our
banking i l lu s t r a t io n in p a r t B; sometimes a dump tape i s unnecessary, e .g . in a P ayro ll routine
i f i t was necessary to dump only departmental a b s t r a c t s , cash breakdowns and co st an aly ses, the
drum might o f fe r adequate o ap acity . Sometimes a tap e-p rin ter w ill not be a v a ila b le and output
w il l have to be on c a rd s ; sometimes tran saction input w ill be on p re-so rted c a rd s ; these l a s t >
two o ases represent wide v a r ia t io n s from the standard p attern and w il l be given sep arate consid
eratio n a t se v e ra l p o in ts in th is le c tu re .

Reverting to the standard p attern a s im p lifie d v ersio n o f the procedure w il l be along
these l i n e s : -

-026.02-

DICS2

Example 2.

Read Balance F i le item

- ~ \ 1
Read Transaction Tape item

l x :--------------- 1
Compare F i le Key with T ransaction Key

J t ’----------------------------- ---- v ' < __________■
✓ _________________L ______________ Advanoe a oounter

E rror ro u tin e : Write l a s t output on ------ :-------------- r - ___________
transecrtion out P rin t and/or Dump Tape

o f order ----------------------------- ------------- r-------------------- ----------------------
------------ P_________ Write l a s t item on Updated

, __________ Balance F i le

Use oounter to determine ______________ ____________
sk ip s neoessary to reach

appropriate point on Standing Read next Balance F i le item
F i le : in i t i a t e the sk ip s |_______________ __ _____________
and zero ise the oounter. 1 "

Do a l l p o ss ib le work with Balance record ,
includin g preparation o f output, while sldgsdng.

Read Standing F i le item

Make remaining c a lc u la t io n s , completing
preparation o f output, and updating

the Balance reoord.

-C26.03-

-C26.04-

The above diagram does not represent q u ite the b est technique, because not enough o f the

c a lc u la t io n i s done in p a r a l le l with tape-sk ip p in g . I t would be b e t te r to lock s l ig h t ly ahead
and be p o sitio n in g the Standing P i le ready fo r the next item w h ilst doing a l l the work on the
overrent item . This kind o f con sideration becomes o f paramount importance where card input and/Or
output i s being used. Here the technique i s to be working on the 2nd tran sactio n w hile reading
the 3rd and punching the r e s u l t s o f the work on the 1 s t tran sac tio n .

026.2 Precautions needed.

(a) P rotecting the Tape.

The g re a te s t danger i s th at o f over-w riting by m istake inform ation th at w il l be needed
again . A normal precaution w ill be to re ta in each tape f o r a t le a s t one period (where period
rep resen ts the frequency o f the updating run) a f t e r i t has been used to generate a fre sh tape*
This would enable the f i l e s to be reconstructed a f t e r an acc id en t; n everth eless i t should be
looked on a s a l a s t l in e o f defence, fo r such recon struction i s a t l e a s t c o s t ly in terms o f time*
Therefore fu rth er precautions a re needed, and two w il l u su a lly be adopted: (i) tape id e n t if ic a t io n ,
and (i i) u se o f the in h ib ito r r in g , which prevents w riting on any tape bearing the r in g . Thus
a safeguard i s obtained aga in st both types o f e rro r : (i) operator load in g the wrong r e e l , and
(i i) machine w riting when not c a l le d on to do so . The u su a l system w il l incorporate the
follow ing p o in ts :-

(i) Every tape to begin with an id e n t if ic a t io n number to correspond with one v i s ib ly

w ritten an i t s container;

(i i) Machine cn oaH Ing f o r re lo ad to in d ica te to operator the id e n tity o f the tape

coming o f f and th a t o f the tape to go an;

(i i i) Machine an s ta r t in g a new tape to read i t s id e n tif ic a t io n block and cheok th a t th is
i s the one c a lle d fo r .

(iv) A ll tape r e e ls to be ringed , except whai being loaded a s output ta p e s ·

(b) Other Precautions.

Automatic p a r ity checking i s a v a ila b le , and should always be u sed · I t may a ls o be
adv isab le to sum each block as i t i s being w ritten on tap e , and to w rite the sum a t the end o f
the b lock. On reading the sum oan then be checked in add ition to p a r ity . In gen eral, to o , a l l

computer rou tin es should include a t l e a s t the same checks a s are included in manual system s, l ik e
double entry , c ro ss- fo o tin g and con tro l t o t a l s .

C26.3 Reproducing the Balance F i le .

In the foregoing i t has been assumed th at the whole balance f i l e w il l be reproduced on
each run, including those records on i t which are unchanged. However, where there i s a low
" s t r ik e den sity " on the f i l e , i . e . where qu ite a la rg e proportion o f the records a re un affected ,
i t may pay to introduce a supplementary Balance P i le containing d e ta i l s only o f the rev ised
reo ord s· In th is case an ex tra tape s ta t io n i s needed; the main and supplementary Balance P i le s
are read and an updated supplementary w ritten . Of course the supplementary f i l e grad ually
in cre ase s in length and eventually reaches a point where no sav ing i s apparent from i t s u se * A
s p e c ia l run i s then needed to update the main Balance P i le introducing a l l the rev ise d records,
and the supplementary f i l e i s s ta r te d from scratch again .

On a Savings and D eposit Account routine f o r one bank, i t was found th a t o f n early h a lf

a m illio n accounts, only about 7,000 were a ffe c te d each day. This rep resen ts a s t r ik e d en sity
o f about 1 .2$ and here i t would c le a r ly pay to keep a supplementary f i l e , rew ritin g the main f i l e
about once a month.

DH3S2

In such a case i t i s a l s o p o ss ib le to employ the technique o f keeping an a c t iv e and an

in a c tiv e f i l e . Accounts d ip lay in g a very low le v e l o f a c t iv i ty are cu lle d from the main f i l e
and kept on an in a c tiv e f i l e ; whenever a tran sa c tio n doee occur on one o f the accounts thus

c u lle d i t would be n ecessary to run the in a c tiv e f i l e . · Hence the c r ite r io n fo r c u llin g would be
such th a t there was a low p ro b a b ility o f s t r ik in g even one o f the in a c tiv e aoeounts on any day.

C26.4 Ordering the D ata.

As the random access time on tape i s q u ite p ro h ib itiv e i t i s n ecessary to maintain each
f i l e in a given order, and to so r t tran sa c tio n s to the same order p r io r to the updating run.
T his s o r t may be done o f f the computer i f (i) the tran sac tio n s are on punched c a rd s , not paper-

ta p e , and (i i) they are punched one p er card ·

S im ila r ly the output w il l be in th e same order a s the f i l e and may need to be so rte d
before p r in tin g or before input to another computer run. Fo r example on a Raw M aterial S to re s
updating run, the f i l e s would doubtless be kept in p a r t number order but the main output - p r ice d
re q u is it io n s - had b e st be prin ted in co st code order and/or input to the co stin g run in th a t
order. S im ila r ly the orders in i t ia t e d on the run would be gathered up by su p p lie r fo r i s s u e . ,

Once again i f the output i s on cards and i s one item p er card , a punched-card so r te r can be used;
* otherwise a computer run i s n ecessary .

C26.5 Number of Tape Decks.
Most o f the time i t w i l l be p o ss ib le to show o peratio n al sav in gs by in creasin g the number

o f decks used and i t i s necessary to s t r ik e the co rre c t balance between th ese sav in gs and the
c a p ita l c o s t involved. The minimum number i s two, one fo r the Balance F i le and one fo r the
updated Balance F i l e . The ways in which ad d itio n al decks may be used to bring o peratio n al

sav in gs a r e :-

(i) To separate stan ding d e ta i l s from the balance d e t a i l s , thus introducing a Standing

F i le .

(i i) To c re a te a supplementary Balance F i le a s ou tlin ed in (3) ·

(i i i) To permit input on tape in ste ad o f card s.

(iv) To perm it output on a p r in t tape and perhaps on a dump tape a l s o .

(v) To allow the tape-operated p r in te r to be run sim ultaneously with the computer.

(v i) To improve so r t in g tim es.

(v i i) To allow tape reloadin g tim es to be absorbed. Often the main f i l e s w i l l each
c o n sist o f se v e ra l r e e l s o f ta p e , and on each occasion th at a r e e l i s exhausted,
i t w i l l take about two minutes to rewind and about one minute more to change. Thus
i f there a re no spare decks, the computer w il l stan d id le f a r about three minutes
each time a change i s n ecessary , and th is lo s s o f time i s l ik e ly to become se rio u s

on any long run . I f spare decks are a v a ila b le these can be loaded in advance o f
o f the computer's requirem ents, and the machine w il l then have more d a ta to work on
w hile tape changes are taking p la c e .

C26.6 Block Length.

On DEUCE the length o f each block i s v a r ia b le - from block to block i f d e sire d - a t the
programmer's d isc re t io n . Sometimes i t w i l l be most convenient to use blocks o f one or two D .L *s
each, so th a t a l l the work oan be done in the high-speed s to r e : normally to accom plish th i s a
Mark I I A w il l be n ecessary . The incidence o f tape s t a r t —sto p tim es may, however, be q u ite
se rio u s when such short b locks a re used , and o ften the u se o f longer blocks w i l l show time sav in g s .

-026.05-

Here the technique w il l be to u se the drum as a b u ffe r s to r e fo r the ta p e , u sin g blocks
o f length up to 16 t r a c k s . With such long b locks i t w i l l o ften prove advantageous to keep an
index o f i t s contents with each b lock : th is enables the programme to determine a t once the
whereabouts o f any record to be updated. G enerally the o b je c tiv e w il l be to make the b locks
a s long a s p o s s ib le without in cu rrin g head s h i f t s ; to fin d the optimum length in any p a r t ic u la r
c a se req u ire s c a lc u la t io n s o f the tim es involved and no gen eral form ula can be la id down. An
i l lu s t r a t io n o f the ca lc u la tio n s in one case stud ied may be h e lp fu l.

Example 3.

On a banking current account run, i t was requ ired to update the balance f i l e by
tran sa c tio n s a lready so rte d and on magnetic tap e . Each tran sa c tio n record contained an account
number (6 decimal d i g i t s) , other num erical m atter (20 d ig i t s p lu s s ign) and 6 a lp h ab e tica l
ch a ra c te rs ; the decimal inform ation had, however, a lready been converted to binary so th a t each
tran sac tio n occupied 4 words in DEUCE, and i t was found b est to have th is arranged in b locks o f

length each 4 t r a c k s , i . e . 32 tr a n sa c tio n s.

Each account record was composed o f account number (6 d i g i t s) , balance (10 d ig i t s p lu s
s ig n) , o ther num erical m atter (48 d ig i t s) and name and address (70 a lp h a b e tica l c h a ra c te r s) ,
and again the num erical inform ation was held in b in ary , so th a t each account occupied 21 words;
these were packed 17 to a block leav in g room in the 12-track block fo r an index o f 17 words.

There were 60,000 such accounts and 20,000 tra n sa c tio n s, assumed, to be d is t r ib u te d :—

1 on every 6th account^ 2 on every 20th account, 10 on every 150th account.

A DEUCE Mk I I with four tape decks was to be used.

The method was :-
The f i r s t b lock o f the tran sa c tio n s tape was read in to fo u r

track s o f the drunkard the f i r s t b look o f the accounts tape in to the remaining twelve track s o f
the same head p o s it io n . The f i r s t track o f each was brought in to the high-speed s to re and the
requ ired account, determined from the tran sac tio n s d a ta , was found on the index to the accounts
d ata and the appropriate track brought in to the high-speed s to re . While th is t r a n s fe r proceeded
(tak in g 16 ms) the index could be scanned fo r the next requ ired account, and i t s t r a n s fe r ordered
a s soon as the f i r s t was complete. S im ilar ly during the second tr a n s fe r the work o f updating
the f i r s t account could be done, and the t r a n s fe r back to drum o f the rev ise d f ig u re s ordered as
socn a s t he l a s t t r a n s fe r was completed. In th is way, a l l computation tim e, except the f i r s t
look-up o f the index to any block, was absorbed in the t r a n s fe r tim es. Now the th e o re tic a l
time o f the operation could be ca lcu la ted .

Time f o r d ealin g with one block o f the tran sa c tio n ta p e :-

Read tape . . · · 103 m 3
T ran sfer each track in tu rn , 4 x 16 . . · · . . 6 4 m s

167 m a

I f -the number o f tran saction s i s c a l le d y , then there were y such b locks, and the time
32f o r dealing with them a l l l67y m s .

32
Let the number of accounts be x and the number of affected accounts be z. Time far

dealing with one block of accounts tape:-
Read tape 282 m s

T ran sfer index to high-speed sto re · · . · . · 1 6 m s

Look up f i r s t a ffe c te d account: f in d (on average) a f t e r x m 8

-026.06-

DB3S2

-C26.07-

T ran sfer (on average) 17z accounts a ffe c te d to high-speed s to r e 16 x 17z m s
x x

T ran sfer to drum the updated accounts · . . . · · · 16 x 17z m s
x

Write updated tape · · · . · . · . . · · · 294 m s______

TOTAL 592 + 545z m s
x

There a re x_ such b lo ck s , so th a t the time fo r d ea lin g w ith a l l was 592 x + 545z m s .
17 17

Rewind time fo r the l a s t r e e l must be added: allow 2 m inutes. A s, a t any tim e, only
three o f the fou r a v a ila b le decks were being u sed , the fou rth could be being rewound and reloaded
without lo s s o f tim e; thus nothing needed to be added f o r rewinding apy r e e l except the l a s t ·

The t o t a l time fo r th is e x e rc ise then was: -
/ I67y 592x + 545z \ m s + 2 m inutes, where there were x accounts, y tra n s-
k 32 * + 17 }

notions and z a ffe c te d accounts. P utting x = 60,000, y a 20,000, z = 12,500 the form ula gave

45 minutes approx·

j I f sh ort b locks had been u sed , the c a lc u la tio n would have b een :-

Let eaoh block o f the accounts tape c o n sist o f cne account only, i . e · 11 w ord-pairs*

Let eaoh block o f the tran sa c tio n s tape c o n s is t o f e igh t tra n sa c tio n s, i . e · 16 w ord-pairs·

The time for reading the accounts tape would be 33 m s per account, and for writing the
updated tape 45 m s par account, a total of 78 x m s for x accounts· That for reading the
transactions tape would be 40 m s per hLobk, or 5y m s for y transactions· The number of
affected accounts is immaterial, and all computation could be done during the tape start-stop
times, but the final rewind would again have to be added, so that the total time required for
updating would become:-

(78x + 5y) m s + 2 m inutes, o r s e t t in g the v alu es f o r t h i s case a s b e fo re ,
82 minutes·

Notes on Example 3»

(i) The d iffe re n ce in time between the two methods (long and sh ort b locks) i s q u ite
marked; th is i s because in t h i s c a se there i s very l i t t l e computation, and the tape s t a r t - s te p
tim es become a m ajor f a c to r ·

(i i) In looking up the index in th is example, the programme sim ply s ta r te d a t the
beginning and worked through t i l l i t found the item requ ired ; in th is c a se a s good a method a s
any. Had the s t r ik e d en sity been very low, however, time could have been saved by the more
so p h istic a te d look-up technique: examine the middle item f i r s t , which w i l l in d ica te which h a lf

the requ ired item i s in . Lock next a t the middle item in th is h alf,; and so an,

B. ILLUSTRATIVE EXAMPLE: BANKING· AEEEICATION.

026·7 Specification·
This example i s a demonstration current account rou tin e: 100 accounts are held on

magnetic tape and 100 tran sactio n s (not evenly spread) a re fe d fo r each day o f a 3-day run·

(a) F i le d ata .

For each account i s to be held name, account number, o verd raft l im it , rep ort le v e l ,
current balan ce, d e ta i l s o f stopped cheques, and h isto ry o f the account, i . e · d e t a i l s o f
a l l tran sactio n s sin ce l a s t statement and s t a t i s t i c s r e la t in g to the current period o f

maximum, minimum and average b alan ces, turnover and products (x .e . sum o f each balance
tim es no, o f days h e ld).

(b) Tran saction d ata .

For each tran sactio n i s to be fe d account number, n a rra tiv e (l a s t 3 d ig i t s o f
cheque n o ., or 3 alpha ch arac te rs, e .g . CSH, DIV), and amount.

(c) Other input.

Prov ision i s a lso requ ired f o r the f i l e d e ta i ls to be amended, accounts to be
opened and c lo se d , and statem ent req u ests to be made.

(d) The D aily Run.

I t i s requ ired to read the input d a ta , so r t i t to the same order a s the f i l e ,
update the balances, h is to ry and s t a t i s t i c a l d e ta i l s by the acceptab le tran sa c tio n s while
re je c t in g any stopped cheques o r d e b its which would reduce a balance below i t s l im it }
a t the same time to make any in d icated amendments to the stan ding d e ta i l s and is su e
statem ents when requested . When a statem ent i s is su e d , the tran sac tio n s shown on it no
longer need to be sto red on the f i l e .

(e) The F in a l Run.

A fte r the three d ay s' tran sac tio n s have been processed , another run i s requ ired
to p rin t out a l l statem ents and the s t a t i s t i c a l d e ta i l s r e la te d to each aocount.

(f) General. v
As many checks a s reasonably necessary a re b u ilt in to the programme a g a in st

punching e rro r , machine and tape e rro r .

126.8 Drawing; up the D e ta ils .

(a) I nput.

I t was found th at the normal tran sactio n could be accommodated w ithin 20 d ig i t s

(= 4 DEUCE words) and could th erefore be prepared four per ca rd . The layout decided
was: -

(i) Account No. - 7 d ig i t s - c o ls . 1 - 7 · (The 7th i s a check d ig i t to ensure
correot punching o f the account number.)

f i i) Card G lass - 1 d ig it - c o l . 8.

(i i i) N arrative - 3 d ig i t s - c o ls . 9 - 1 1 ·
(iv) Amount - 9 d ig i t s - c o ls . 12 - 20. (S h illin g s and pence each being punched

in one column only, so th at amounts up to £9,999,999/19/11 axe allow ed).

Repeat fo r c o ls . 21 - 4-0, 41 - 60 and 61 - 80.

Λη X overpunching in c o l. 1 (o r 21, 41 or 61) to in d ica te l a s t tran sactio n o f the

d ay 's run.

"Statement request" or "c lo se account" w il l simply oooupy the f i r s t 8 columns
(a/C No. p lu s Card C la s s) , but provision must be made f o r more d e t a i l s to be shorn on
"open new account" o r "amend standing d e ta i ls " so fo r these two c la s s e s a whole card
i s a llo c a te d .

The card c la s s must be taken in to account in the so rtin g run, so th at where there
are two or more inputs fo r the same account, they w ill be d e a lt with in the correot

order. Therefore car'd c la s s numbers are used as fo llo w s: -

1 . New account.
2 . Amendment.
3. Correction o f Cr. tran sactio n .
4 . Gr. tran saction .
5 · Correction o f Dr. tran sactio n .

- 0 2 6 ,0 8 -

3KJS2

6. Dr. transaction: override limit.
7. Dr. transaction: normal-.
8. Statement request.
9. Close accomt.

(b) File data.
This is also kept mainly in character form and arranged as follows:-
(i) Word-pair 1: Indicative information (no. of trades occupied by this a/c,

no. of stopped cheques, no. of entries in its history).
(ii) Word-paws 2 - 4: Accountholder* s name (up to 30 characters)#
(iii) Word-pair 5: Account No, (7 digits).

δ cl(iv) Word-pair 6: Current balance (up to £10° - 1a) and sign.O j
(v) Word-pair 7: Report level (up to £10° - -|a) and sign.

δ cL(vi) Word-pair 8: limit (up to £10 - 1) and sign.
(v i i) Word-pair 9: Maximum balance (up to £ (1 0 ^ - 1)) and sign#
(v i i i) Word-pair 10: Minimum balance (up to £(101<"* - 1)) and sign.

i 0(ix) Word-pair 11: Dr. Products (up to (10 - 1) S -d ay s).
, (x) Word-pair 12: Cr. Products (up to (101 *̂ - 1) £-days).

(xi) Word-pair 13: Dr. Turnover (up to £(10^ - 1))
(x i i) Word-pair 14: Cr. Turnover (up to £ (1 0 ^ - 1)) ·
(xiii) Word-pairs 15 <& 16: each details of a stopped cheque: last 3 digits of

cheque no. and last 8 digits of amount, where known.
If there are more than two stops, a fresh trade is allocated to the overflow, and

the history then starts on the third track. Otherwise it starts on the second track#
Each transaction recorded in the history occupies three word pairs:-

(xiv) Word-pair 1: Date (5 characters) and Narrative (3 characters)·
3 (3.(xv) Word-pair 2: Amount (up to £10 - 1) and sign#

δ d(xvi) Word-pair 3: Balance (up to £10 - 1) and sign#
Thus up to ten transactions can be accommodated in each track# No provision is

made for any aocount to occupy more, than 16 tracks; eaoh account appears as one block
on the magnetic tape.
(c) Daily output.

First, a list of all accounts on the file;, tabulated from punched cards put out by
DEUCE. Each card corresponds to one account, and 3hows:-

(i) C o ls . 1 - 30; name.
(ii) Cols. 31 - 57: account no.
(iii) Cols. 41 - 50: balance, with sign overpunched in col. 41.
(iv) Cols. 51 - 60: total of debit entries for day.
(v) Cols. 61 - 70: total of credit entries for day.
(vi) Cols. 71 - 80: the report level, if the balance on the account has fallen

below that level.
Second, the list of rejected transactions: this shows the details of each

transaction as input and the reason far rejection, which may be one of seven: —
(i) Closure requested on account whose balance is not nil.
(ii) Error in account no.: check digit does not agree.
(iii) No accomt held far this number.
(iv) Cheque is a stopped one.
(v) This transaction would take balance cn account below its limit.

- 0 2 6 .0 9 -

DPCS2

—02ύ » ΙΟ
Ι

(ν±) Request to open new account when an account e x i s t s fo r th is number a lread y .

(v i i) C orrection v.dthout corresponding tran sac tio n .

(d) F inal cutou t.

F i r s t , a statement f o r each account on the f i l e . Each statem ent i s tab u la ted

from the follow ing cards : -

(i) A heading card "3ΓΛ!ΕΜΒΝϊ".
(i i) Name, account no. and date.
(i i i) Headings: D ate, N arrativ e , Dr. Amount, Or. M ount, Dr. Balance, C r. Balance.
(iv) A card f o r each entry on the statem ent.

Second, a l i s t o f th e s t a t i s t i c s held fo r each account, a s a lread y shown on the

f i l e .

(e) The Programme.

The d a ily run d iv id es in to three p a r t s : -

(i) Read tran sa c tio n s. Read the date card and c a lcu la te the date a s a day
number (th is makes e a s ie r the subsequent c a lc u la t io n s) ; (
read each tran saction and check i t s account number;
accumulate the amounts; p a r t ia l ly so r t the tra n sa c tio n s,
making s t r in g s o f 8 before sto r in g on the drum; read
the t o t a l card and check th a t t h i s agrees with the
accum ulations. Block flow diagram follow s .

(i i) Drum s o r t o f tran sa c tio n s.
This i s done by a standard progranrne in the l ib r a r y .

(i i i) Update F i l e and Rxnch Balances.
Read each account; i f i t i s an a ffe c te d one determine
the card c la s s o f tran sactio n and take appropriate

action on the account. When work (i f any) on each
account i s f in ish e d , punch a card fo r the Balanoe l i s t .
Store d e ta i l s f o r any statem ents c a lle d fo r and of
tr a r .action s re je c te d , punching cards f o r these o la s se s
a t the end. Block flow diagram fo llow s.

In ad d ition , the f in a l run produces statem ents and s t a t i s t i c s , elim inating the
h is to ry from the f i l e .

DRJS2

PART 2 so r ts the tran sac tio n s in to order on the drum.

PART 3 - UPDATE FILE.
The l a s t entry on the Balance tape i s a dummy having a key g re a te r than any p o ss ib le

account number: th i s i s the e n d -o f- f ile marker. In th e so r t rou tin e a s im ila r dumny has been

generated a f t e r the l a s t tran sactio n . *
Tape 1 contains the Balance F i l e , with stop s and h is to ry .
Tape 2 i s to contain the updated Balance F i l e .
Tape 3 i s to contain re je c te d tran sa c tio n s.
Tape 4 i s to contain d e t a i l s f o r statem ents requested on the run.
The drum contain s the tran sa c tio n s, and a rea A in the high-speed s to r e i s reserved f o r

the tran sac tio n cu rren tly being operated on.
Area B (one head-position o f the drum) contain s the account being operated on.
Area C o f the high-speed s to re i s reserved f o r co rre c tio n s.
Area D i s reserved f o r the form ation o f output inform ation u n t i l i t i s ready to punch.

-C26.12-

DFCS2

27

-27.01 -

LECTURE 27.
AN OUTLINE OF STAC.

27.1 INTRODUCTION.
Half the battle of solving a problem is finding a set of rules which, faithfully

carried out, give the answer. This work is usually quite difficult, and is tackled with
energy and enthusiasm by human brains of high calibre. Having achieved this much, the brains
tend to be somewhat less interested in the other half of the battle, which consists of
slogging out these rules to produce a result, and seek to delegate the work.

On this course, you have been learning how this work may be delegated to DEUCE, and,
more than likely by now, you are dismayed to find that you have jumped from the flying pan
of manual computation into the fire of programming*. But you are at an advantage in that
other people have jumped before you, and they have made good progress towards quenching
the flames. Many devices now exist to alleviate the burden of programming; the simplest
of these are the subroutines which save replanning and recoding operations of frequent
occurrence such as finding a square root or sorting a string of numbers into ascending order
of size, but a bolder type of programme actually throws back some of the drudgery onto the
DEUCE itself.
27.2 THE STORAGE ALLOCATION AND CODING PROGRAMME.

The STAC programme (an abbreviation for STorage Allocation and Coding) is of the latter
type, and it can be used to eliminate the more mechanical steps when writing a programme in
the basic DEUCE instruction code. What you have to do is:-

(1) Describe the computational method by diagrams in which short sentences and/or
algebraic expressions represents steps in the computation and arrows indicate the order in
which the steps are to be performed, including repetitions and alternative paths which are
to be decided from results of previous steps. (See Example 1).

(2) Divide these step* into smaller simpler steps each of which can be written as a
single DEUCE instruction or an existing subroutine of instructions. This sequence of DEUCE
instructions is callod the Plow Diagram.

Each DEUCE instruction specifies a Source and a Destination, Either of these may he
a computer address. However, it is not necessary to fix all these addresses while writing the
flow diagram; in fact there are places where you may write symbolic addresses in the flow
diagram which can later be allocated real addresses, (See Example 2),

(3) Punch this flow diagram, in decimal and with one instruction per card, using the
layout specified for STAC input and hand over to the DEUCE and STAC,

What STAC and the DEUCE will do for you is:-
(1) Allocate real computer addresses to each symbolic address and to each instruction,
(2) Code the instructions i.e, write them in the form the DEUCE understands.
(3) Punch the binaiy instruction cards, and also alphanumeric cards that can be

printed to give a flow diagram with instruction locations and a directoiy of symbolic
addresses with their real address allocation.

27.3 PREPARING- THE FLOW DIAGRAM.

This section, on preparing the flow diagram, is intended to give you an appreciation of
the scope and limitations of STAC; it does not give a full account of all the facilities
included in STAC, nor does it include operating details such as punching formats or pack
assembly, s ince this is written out in the STAC Programming Manual (Ref.1).

DPCS2

2 7 .4 OVERALL· ORGANISATION.

Some o f the f a c i l i t i e s provided in the STAC scheme have been chosen to make the
w ritin g o f a la rg e programme as convenient as p o s s ib le . However, the presence o f these

f a c i l i t i e s does not exclude the p o s s ib i l i ty o f doing sm all job s such a s coding a subroutine.

In dealing with a la rg e programme, the flow diagram should be s p l i t in to se c t io n s .

These section s w ill be tran sla te d sep ara te ly from STAC to DEUCE code and then should be
assembled in to a complete pack u sin g some so rt o f contro l scheme.

A contro l scheme has been sp e c ia lly devised fo r STAC-produced sec tio n s which
incorporate various programme te s t in g f a c i l i t i e s (R ef.2) .

The minimum requirements a sectio n must meet a r e : -

(1) A ll the in stru c tio n s must f i t in to the high speed s to r e (i . e . overw riting o f
blocks o f in stru ctio n s from card s or the drum during the execution o f the se c t io n i s not

p e rm iss ib le) .

(2) The a v a ila b le s to re s in D .L 's 1 - 8 (i . e . the NIS D .*L s) must be s u f f ic ie n t to
accommodate a l l in stru c tio n s without e x p lic it computer addresses and a l l symbolic address

(whether they are in stru ctio n s o r n o t) .

Prom th is i t may be seen th at d iv is io n in to se c tio n s i s necessary to accommodate
a.n the in stru c tio n s . In f a c t , a t the end o f each se c tio n new in stru c tio n s are fetched from

cards or from the drum. Therefore, when s p l i t t in g a flow diagram in to s e c t io n s , care
should be taken to ensure that where p o ss ib le d iv is io n s do not c u t ac ro ss inner lo o p s .

27.5 A SIMPLE SEQUENCE OP INSTRUCTIONS.
The flow diagram should co n sist o f sequences o f in s tru c t io n s , which w il l normally be

DEUCE in stru c tio n s . Each DEUCE in stru c tio n should sp ec ify a t l e a s t a Source and a D estin ation .

e .g . 110 - 13

1 ¾ - 25

" 110

The in stru c tio n sequence i s normally sp e c if ie d by the order in which in s tru c tio n s
are w ritten down.

27 .6 SYMBOLIC ADDRESSES.

NIS D.L. storage p o sitio n s used to sto re in s tru c t io n s , numbers o r p a tte rn s may be
re fe rred to sym bolically . There are 100 symbolic ad d resses , w ritten R^, Rg, . . · , R^qq.

27.7 A SEQUENCE OP INSTRUCTIONS USING SYMBOLIC ADDRESSES.
The Source o r D estination of an in stru c tio n (not both) may be a symbolic address

e .g . R22 - 13

14 “ 25

13 - R22

However, an in stru c tio n may not sp ecify tra n s fe r between a D.L. s to re and a symbolic
ad d ress.

e .g . 32y - R.^ i s not allowed.

Note th a t the various requirements of a symbolic address must be compatible with i t s
being a llo cate d a D.L. address by STAC

e .g . R18 - 192 and la t e r

R18 ~ i s not allowed.

-2 7 .0 2 -

DPCS2

27.8 LENGTH OF TRANSFER.
An instruction may also qoecify a length of transfer

e.g. 14 - 13
27 - 25 (5 m.c's)
13 - 14

Provided neither Source nor Destination are symbolic addresses, the length of transfer
may lie between 2 m.c's and 33 m.c's inclusive. Otherwise, only a transfer of length 2 m.c'8
is allowed. For example, R ^ - 18̂ (2 m.c's) may be written and this means transfer
R.* to 18. and Rjn to 18„. R. ,· and R,_ will be allocated real addresses in the same D.L.1o 1 17 2 1o 17
and in adjacent m.c's.
27.9 INSTRUCTION LOCATION AND NEXT INSTRUCTION.

Since a sequence is normally specified by the order in which instructions are written
down, it is not normally necessaiy t o refer explicitly to the addresses at which instructions
are stored. However, there are circumstances in which explicit references to instruction
addresses have to be made, namely

(a) the instruction is to be moved or involved in arithmetic operations, in which
case all references to it must be by its address (symbolic or real) including its execution.

(b) the above sequencing rule is broken
(c) storage is allocated manually.
To deal with these cases, an instruction may specify its instruction location and/or

its next instruction. They can be either real or symbolic addresses.
27.10 JUMPS.

Unconditional or conditional jumps in a sequence of instructions may be made. An
instruction which leads to an instruction which is not the next in the STAC pack will be
called a jump instruction. An example of an unconditional jump is:-

” v T ~ 13
2 8 - 2 5
13 - 192

14 - 13

I ,92 ; 14
An unconditional jump is specified by allocating an instruction location to the

instruction to which the jump is to be made and put the next instruction of the jump
instruction equal to this instruction location.

e.g. the above example might be written
R - 1~19 ' '

28 - 25
13 -192

1« - 13
192 - 14 R1S,

-27.03-

DPCS2

A conditional jump occurs when the jump instruction is a discriminative instruction,
i.e. has destination 27 or 28 or is 2 - 24. Such an instruction has two possible next
instructions, the natural next instruction and the unnatural next instruction (the natural
next instruction being taken if the source contains zero in the case of destination 28, or
a positive number in the case of destination 27, or if the TIL signal is not on in the case
of 2 - 24).

e.g. 13 - 28

0 \ 0
14-16 1 5 - 2 6

This is specified asfollows:-
(1) Allocate an instruction location to the natural next instruction.
(2) Make the next instruction of the jump instruction equal to this instruction

location.
(3) Then allocate the instruction location of the unnatural next instruction as

follows:- if the instruction location of the natural next instruction is a real computer
address, then allocate the next m.c. of the same D.L. If it is a sumbolic address, allocate
the sumbolic address with subscript one greater.

e.g. 13 - 28

0 ‘ v , 0
./ \

1 18 14 " 16 119 15 " 26

e.g. 13^- 28
0 ..- .. 0

1 4 - 1 6 Rg N 15 - 26

27.11 MANUAL STORAGE ALLOCATION.

The programmer may wish to allocate real computer addresses to a sequence of
instructions, for example to obtain optimum coding in a tight loop. These addresses are
written as instruction locations.
Quasi.

An instruction may also specif^ a 'quasi' m.c. i.e. the minor cycle from which the
instruction is obeyed if this is different from the one in which it is stored. It must
be a real minor cycle number not symbolic. One of its uses if for instructions obeyed
via destination 0.

e.g. 13 - 0

Q30 ^11 14 “ 10(P

27.12 SUBROUTINES.

Library subroutines may be conveniently included in the flow diagram. To this end,
each subroutine or each entry of a multiple entry subroutine in the library has been
identified by a three-digit serial number. A subroutine also has a position which is
defined as the number of the lowest D.L. occupied. Most subroutines are available in
several positions.

To use a subroutine, the subroutine cards in the position required must be reproduced
from the subroutine library and included in the STAC pack. The STAC instruction to include
the subroutine in the flow diagram is written SXYZ/T where XYZ is the (3 digit) serial number

- 2 7 . 0 4 -

DPCS2

of the subroutine (Ref. 1, Appendix 1) and T is the position of the subroutine. STAC
automatically pfcbduces: instructions whieh plant ̂ the lihkj ehter the subroutine in the correct
m.c. and obey the link from the correct quasi m.c. (the link is taken to be the instruction
immediately following the subroutine instruction),

e.g. a possible sequence is
15 - 14
S146/5
13 - 101

If S146/5 were a subroutine of order 2 with link in 13 and entry in 5gg» this might
get coded

420 15 - 14

**22 424~ 13

^26
, SiUB/5̂

Q31 ^24 1 5 - 1 0 ^
However, STAC does not plant parameters in subroutines and these must be dealt with

manually,
27.13 ORDER OP PRIORITY.

The speed of the resulting programme can be affected by the storage allocation and is
generally better when there is a bigger selection of unallocated addresses. A sequence of
instructions may be given priority over other sequences of instructions, when instruction
addresses are being allocated, by giving the first instruction in each sequence a priority
number. (A sequence is taken to mean a sequence in the STAC card pack). Priority
numbers range from 1 to 9, a small number indicating a high priority.
27.14 FACILITIES FOR THE MORE EXPERIENCED DEUCE PRO&RAMMER.

Facilities are included which aid the experienced DEUCE programmer to perform
arithmetical operations on instructions to generate new instructions.
27.15 FUTURE DEVELOPMENT.

At the time of writing, STAC is one of the newest additions to the DEUCE programme
libraiy and we have not had much chance of seeing it in action.

We have done our best to make the programme do all the manual claims it does, and
we are hopeful that you will have no trouble on that score. However we are less sure
that the manual describes the programme for storage allocation and coding that is most
convenient for your application, as we were able to sound the opinions of a rather limited
number of DEUCE users when drawing up the original design. We are already aware that it
has various shortcomings, and we would welcome your criticisms and suggestions. Please
address these to Miss A. Birchmore, E.E.Co. Ltd., London Computing Service, Marconi House,
Strand, London W.C.2, who will attempt a second version if there is sufficient demand.

References.
(1) STAC Programming Manual. (DEUCE News No. 38).
(2) Control Programme for STAC-Produced Sections. (ZC20T, No. 483).

-27.05-

DPCS2

- 2 7 .0 6 -

Logical Flow Diagram of a Programme to Calculate the Cubes of the First n Natural
Numbers (n UL) .

Example 1 .

DPCS2

-2?.07-

Example 2.
STAC Programme to Calculate Cubes of First n Natural Numbers (nC- 44-).

130 0 ~ R. X 1
24·9 -

27 - 192
r6 i y2 ~ 16

16 - 213
’ MULTJ
212 " 15
15 - 213
MULTJ

212 “
R2

15
16 (¾ = 104 24)

15 - 213
DIVj

192 - 14-
24- *· 14- (16)
R3 - 15 (¾ = 3>17)
\ - 13
25 - 25
212 “ 16
13 - 0

Q30 ^\) 16 1?3)
192 - 13
27 - 25

• 13 - 192
25 - 28

DPCS2

28

29

29.01

Extra D.L's on Deuce MK.IIA

The Deuce MK.IIA is fitted with an extra seven long DLs, available for either data or
instruction storage· They are referred to as DL 1A to 7^, but require some addition to the
normal order oode to oontrol their use·

Source and Destination·

The source and/or destination may either refer to the ordinary DL's 1 - 7 or to the
extra DIi's 1^- 7^· The distinction between the two is controlled solely by the digit of
the instruction, irrespective of whether the instruction itself is obeyed from the ordinary
DL's or the extra DL's
The rules are therefore:-

1) If either the source or the destination refers to the "A" delay lines, the
instruction will have a P.1

2) If neither source or destination refers to the "A" delay lines, the instruction
will not have a P.1

3) Only sources and destination in the range 1 - 7 are affeoted in this way by
the P̂ digit*

4) Transfers from DL 1 - 7 to the "A" DLs or vioe versa are not possible.

Next Instruction·

The decision on whether the next instruction oomes from the ordinary DL's or from the Ά 1
DL's depends on the state of trigger circuit 'C (TCC). If TCC is off, the next
instruction source refers to the ordinary DL's. If TCC is on, the next instruction source
refers to DL 1^ - 7^ or DL8»

The control Instructions for TCC are:-
1 4 - 2 4 (s) Put TCC off.
1 4 - 2 4 (l) Put TCC on.
The next instruction source of the TCC switching instruotion depends on the state of

TCC after obeying the switching instruotion,
i.e. 1, 14 - 24 (l) will take the next instruotion from DL 1^

1, 14 - 24 (s) will take the next instruotion from DL 1
TCC does not affect NIS 8
TCC is automatically cleared by initial input.

DPCS2

29.02

Deuce Destination Triggers.

The following is a complete list of Deuce Destination Trigger as at 1st June, 1960.
It should be noted that some only apply to particular types of Deuce, and use various parts
of the instruction word in addition to the normal source. In view of this, any destination
trigger instruction should be coded exactly as required with no extraneous digits at all, to
avoid incorrect operation on other Deuce installations.

1) Control of Deuce and Peripheral Equipment.
0 - 2 4 Stim mult
1 - 24 Stim divide
2 - 2 4 TIL (64 or 80 col)
2-241 TIL (Paper Tape Punch)
3 - 2 4 Stim TCA
4 - 2 4 Clear TCB
5 - 24 Stim TCB
6 - 2 4 Clear alarm
7 - 2 4 Stim alarm
8 - 2 4 Clear OPS
8 - 241 Switch top field for 64 col card punch.
9 - 2 4 Clear card read or punch or paper tape punch or graph plotter.
9- 241 Clear paper tape read
10-24 Stim card punch for 64 col operation
10 - 241 Stim card punch for 80 col operation. Read store starts in m.c.

(m + ΐ/ + 2) of DL12 therefore punch store starts in m.c. (m + W + 18) of D112.
11 - 2 4 Not used
12 - 2 4 Stim card reader for 64 col. operation
12-241 Stim card reader for 80 col. operation. Read store starts in m.o.

(m + W + 2) of DL12 therefore punch 3tore starts in m.c. (ra + W + 18) of DL12.
1 3 - 2 4 Stim paper tape read
13-241 Stim paper tape punch or graph plotter.
14 - 2 4 Clear T.C.C.
14-241 Stim T.C.C.
15 - 2 4 Not used.

2) Control of Magnetic Tape Equipment.
16 - 24)
23 - 24)

Seleot tape deck N where N = S - 16

2 4 - 2 4 Transfer 11 characters/word pair from magnetic tape
24 - 241 Transfer 11 characters/word pair to magnetio tape

* Pi, 24 - 24 Group sequence transfer: Transfer 11 character/word pair from magnetio tape
* PI ,24 - 2a Group sequence transfer: Transfer 11 character/word pair to magnetio tape

25-24 Transfer 10 character/word pair from magnetic tape
25 - 241 Transfer 10 character/word pair to magnetic tape

* Pi, 25 - 24 Group sequence transfer: Transfer 10 character/word pair from magnetio tape
* pi ,25 - 241 Group sequence transfer: Transfer 10 character/word pair to magnetic tape

2 6 -2 4 Stia V/rite record gap
2 7 -2 4 Rewind
28 -24 Skip forward one block
28 - 241 Skip forward to next record gap

DPC32

29.03

2 9 - 24 skip backward one block
29 - 241 Skip backward to next record gap
3 0 - 24 Test parity indicator
3 1 - 24 Clear write record gap, or interlook un til outstanding magnetic tape funotion

(except rewind) are completed. Previously called 'in a c tiv e '·

The P22 - 25 d ig its in a group sequence tran sfer instruction indicate the number o f
word p airs to be transferred to or from the f i r s t D .L ., commencing a t the word p air
indicated by (m + w + 2). There a fte r , tran sfer w ill be fo r 16 word p a ir s . I f
P22 - 23 d ig its are a l l zero, the f i r s t tran sfer w ill be fo r 16 word p a irs.

DPCS2

30

-01 -

INTRODUCTION.
The lectures given in the first week of the Programming Course have aimed at

explaining the facilities which are available on DEUCE. The short examples after each lecture
have been in the nature of five finger exeroiaes designed to illustrate the use of
each of the several functions. The next task is that of learning how to use the
DEUCE to solve problems. Three programming examples have been chosen to give students
some praotioal experience.

Any attenpt to programme a problem should be started by asking and answering certain
questions. In broad outline these ares-

(a) How will the data be presented?
(b) How will the results be put-out?
(c) Are subroutines required?
(d) Is this a single or mult-section programme?
Many other points of detail will need to be cleared up before detailed programming

can begin and each example is accompanied by a questionnaire which illustrates the kind of
question an experienced programmer would formulate in his attempt at the problem.

Programming Example No. 1 has been largely completed in the preliminary stages. A
logical block diagram is provided and the problem will be completed w hen the logioal diagram
is translated into DEUCE instructions. All students are requested to maintain the highest
standard of neatness in preparing logioal diagrams, flow diagrams and coding sheets.

DEUCE PROGRAMMING HtACTICE.

DPCS2

-02-
DEUCE PROGRAMMING EXERCISE N0.1.

SPECIFICATION OF HtOURAMME.
Write a programme -which calculates, stores and punches the cubes of the natural

mmibers from n̂ to n^.
Lim its o f Data»

& 1024 (210)

n2 - n1 + 1 $ J20

1 · The programme should read in n̂ and in binary from the Y and X rows respectively
o f the one input card·

2. Test i f ttg 1024*

3 . Test i f n2 - ^ + 1 < 320.
3 34 · Calculate and store cubes from n̂ to n2 ·

5* Punch out cubes in binary, 12 per card from n ^ to n ^ .

6 · Return to the beginning to repeat fo r d ifferen t n^, n2 values.

Test Data·

(a) n., = 1
n2 81 3

(b) n,, = 1
n2 = 33

(c) ^ = 1
n2 = 320

(d) n., » 1
n2 a 2" to ohedc fa ilu re ·

(e) n1 = 1
n2 a 312. to ohedc failure·

(f) Any n.,, ng·

Questionnaire·
101· Why i s n, lim ited to 2 ?

Answer· (210)^ a whioh i s inside single length. 21® i s a convenient upper
lim it·

2 · Why i s ng - n^ + 1 lim ited to 320?
Answer· The nuriber of oubes i s n2 - n̂ + 1. I t i s estimated that the programme

w ill need 2 delay lin es only leaving 10 delay lin e s fo r re su lts i * e ·
320 words·

3 · Why are so many se ts o f te st data reoommended*
Answer· (a) Checks that cubes are being formed and stored·

(b) Oheoks that storage extends oorreotly beyond one delay lin e ·
(o) Oheoks that storage extends oorreotly through a l l delay lin e s ·
(d) Cheeks the fa ilu re loop fo r > 210.
(e) Cheoke the fa ilu re loop for n2 - n,j + 1 > 320.

EPOS 2

DEUCE PROGRAMMING EXERCISE NO. 1»
LOGICAL FLOW DIAGRAM.

-0 >

STATEMENT OP T’ROHT.’FM.

A sum of money £C is borrowed at p?« per annum compound interest, to be repaid over a
period of n years in equal annual instalments· What is the amount of the annual repayment,
expressed in pounds, shillings and pence rounded uj> to the nearest penny above?
Formula to be Used·

The annual repayment £bc is given by the formula :-
_ IL.x " 100 . 1
-----n ^ ere ^ s 1 + p/lOO1 -e<_

Limits of Data·
The programme should be valid for any combination using the following ranges:-

0 ^ C i 10,000 to nearest integer·
p ̂ 10 to three decimal places·

Λ < n < 40 to nearest integer.
Specification of Problem.

Write a DEUCE programme which: -
(a) Reads the 3 values C, p and n from a single card punched in decimal, using

subroutine R03·
(b) Calculates the repayment x, using fixed point single length arithmetic, without

using multiplication or division subroutines·
(c) Punches the result in decimal, using subroutine P03·
(d) Returns to step (a) to read another card, so that any number of cases may be

confuted without reading in the whole programme again.
The following questions and instructions are typical of those which a con^etant

programmer will ask and follow himself when planning the method of attack on the problem.
All students are expected to answer the questions and following the directions*

Questionnaire.
1. Do you understand the problem as specified in the problem statement?
2. What is the significance of data limits?
3« What is the significance of the 3 decimal places in the specification of p?
4* What will be the representation of p in DEUCE after it is read from a

card and converted to binary by subroutine R03?
3. What is the maximum value of p?
6. What is the maximum value of P/100?
7. What is the binary value of (^/100)^^, ?
8. What is the maximum number of binary places permissible for (^/100)^^ when

held as a single-length signed DEUCE number?
9. What is the maximum value of ^ ? What value of p determines this?
10. If it is decided to fora oC by first farming 1 + p/100, how many binary

places are permitted? With this number of binary places, what is 1 (in the expression
1 + P/100) as a DEUCE WORD?

1 1. What other method can be used to farm c<- ?
12. Haw many binary places can ot have as a single-length signed number?
13· To round off «4 correctly how many places should be obtained:—

-04-
DEUCE HK»RAMMIWS EXERCISE NO.2.

(a) before round off?
(b) after round off? i

14* If o4 is calculated by dividing 1 by 1 + P/100 what value must the 1 in the
numerator have to obtain 31 b.p. from the divider assuming 1 + P/100 has 30 b.p.

15. Is oC n ever greater than 1? 4
16. How many binary places are required for oc **?
17* How will oCn be formed in the programme?
18. Is 7Ϊ5? ever greater than one? What value of n maximises ■" p/| _ ?

1
1 “ e*·** ¢ /10019· How many b.p· are suitable for ·Μ n'

1 -oC
20. Why is it preferable to form and st*sequently multiply by C instead

of farming CP/100 and dividing by 1 -ei r

21 · What is implied by the requirement that x is rounded upwards?
C P/10022» What units does x represent after the calculation '_ / _?
1 -eC

23· How can x be converted to £. s· d·?
24· What will be the maximum number of figures in any of the £. s* d· output figures·
25. Do you fully understand all the information on R03?
26. Do you fully understand all the information on P03?

Instruction 1·
After all the above questions have been answered by a student to a tutor’s satisfaction

he may proceed to prepare a LOGICAL FLOW DIAGRAM of the programme. No student will be
permitted to write DEUCE instructions until a LOGICAL FIOW DIAGRAM has been approved by a
tutor.
Instruction 2»

After a students logical flow diagram is approved he should prepare a DEUCE flow
diagram of instructions. This must be annotated to show binary places used in calculations
and to indicate partial result variables·

When an instruction flow diagram has been prepared and checked by a tutor it will
be punched and coded by N.R.L. coding assistants·

While a programme is being coded and punched students should prepare test data
figures·
Instruction 3·

For test data C = 10000, n = 1, p = 10 prepare binary patterns corresponding to those
used at different stages of your programme for

P/100
1 + P/100 (if used)
oC
P/100
. 11 1 -o L

Integral part of CP/100
1 -otn

Make sure you know the TS, DS or D.L. positions of each of these before you
go on the 1st machine run.

-0 5 - «

STATEMENT OP PROBLEM.
It is required to construct a table of values of the annual repayment £s for £1

of capital borrowed at p$ for a period of n years. Entries are required in the table at
intervals of $ n years between the limits n̂ and n^, and £ p$ between the limits of
and Pg·
Formulation of Problem.

For an interest rate of p a n d a term of n years, the repayment £x on £1 of borrowed
capital is given bys-

JL. ■)x = 100 where = 1 ' ■ ■
n H P /100

1 —cC

Limits of Problem.
P1 & 1.000 n., 1
p & 0.001 n * 1
P2 ^ 10.000 ng 4: U0

Specification of Problem.
Write a programme tos-
(a) Read p^, £p, pg in decimal from one card.
(b) Read n^, £ n, n2 in decimal from one card.
(c) Calculate x for all combinations of n and p within the limits defined by the data,
(a) Store the values of x continuously on the magnetic drum, separating each

set of entries having the same value of p from those having a different value of p by a
suitable marker, (i.e. ^/100 to the same number of binary places as the values of x).

(e) A failure indication should be given if the capacity of the magnetic drum is
exceeded·

(f) When all values of x have been stored, the read should be called, 1q cleared,
and the next instruction taken from 1q to enable a second programme to be read in to puch
out the results. Students are NOT asked to programme this punch routine*
Testing of Programme*

The following values should be used for testing the programme:-
Test 1 (to check calculation)·

P1 = 1» Sp = 9, P2 = 10
* 1 , in s 1 , n2 = 10

Test 2« (to check storage) p̂ =» 1, ip = .125, P2 = 10
n.j = 1 , $ n & 1 , n2 π y)

-06 -

DEUCE m O G R m n m EXERCISE NO. 5*

DEUCE PROGRAMMING EXERCISE NO A

1* STATEMENT OF PROBLEM.

A manufacturing and re ta ilin g organisation uses a computer fo r cen tralised
stock-taking· Each branch i s supplied from one o f three warehouses and s e lls goods which
are c la ss ifie d in three main groups, WET, DRY and BOUGHT OUT. Stock to ta ls are required fo r
a l l goods o f each type from each warehouse· In addition , n otification o f excess stock
value i s required fo r one item in the BOUGHT OUT category·

2. DATA DESCRIPTIONS.
(a) Branoh Stock Card. Use: INPUT

Card Col· Remarks·

1 - 15 Branch Name.
16 Warehouse Code. A * Kidderminster

B b Reading
C a Doncaster

17 Goods Code· J = WET
K a DRY
L a BOUGHT OUT.

2 1 - 2 2 Catalogue Number·
2 6 - 3 0 Quantity
31 - 32 Catalogue Number
36 - 40 Quantity
4 1 - 4 2 Catalogue Number
46 - 50 Quantity
51 - 52 Catalogue Number
56 - 60 Quantity
61 - 62 Catalogue Number
66 - 70 Quantity
71 - 72 Catalogue Number
76 - 80 Quantity·

N otes:- (i) A ll quantities are five decimal d ig its , fu lly punched·
(i i) Catalogue codes are a numeric character preceded by the goods code

character. A ll catalogue numbers on one card have the same f i r s t
character. For example, on a J card (o o l. 17) the catalogue numbers
are :

Col 21 - 22 J1
Col 31 - 32 J2
Col 4 1 - 4 2 J3
Col 51 -.52 J4
Col 61 - 62 J5
Col 71 - 72 J 6

Catalogue numbers are not required in the programme·

-0 7 -

DPCS2

(b) Description Card. Use INPUT.

Output cards bearing the to ta ls fo r each warehouse and goods type are required
to carry the appropriate oode characters in Cols. 16 and 17 and the warehouse name
in C ols. 1 - 1 5 · These descriptions oust be read into the machine on description
oards which are id en tified by a "D" punched in Col. 20.

Card Col. Remarks.
1 - 15 Warehouse Name

16 Warehouse Code
17 Coods Code
1 8 - 1 9 Blank
20 "D"
2 1 - 8 0 Zeroes

N ote:- There are nine description cards.

(o) End Card. Use INPUT

To indicate the end o f input data an "END CARD" i s reoognised by the code
le t te r "Z" in Column 20. This END CARD i s also used to plaoe the description
GRAND TOTAL in the delay lin e used fo r cheok to ta ls (see la te r) ·

Card Col. Remarks·
1 - 1 5 GRAND TOTAL

16 - 19 Blank
20 "Z"
2 1 - 8 0 Blank

(d) Warehouse/Goods T otals. Use. OUTPUT.

«
At the end o f processing, nine warehouse/ goods to ta ls are required·

Card Column. Remarks.
1 - 15 Warehouse Name

16 Warehouse Code
17 Goods Code
1 8 - 1 9 Blank
20 "D"
21 - 30 Total o f a l l input data C ols. 26 - 30

from input cards with same warehouse
and goods oodes·

31 - 40 Totals o f relevant input data Cols·
36 - 4.0

41 - 50 Totals o f relevant input data Cols*
46 - 50

51 - 60 Totals o f relevant input data Cols·
5 6 - 6 0

61 - 70 T otals o f relevant input data Cols·
66 - 70

-08-

Card Column. Remarks.
7 1 - 8 0 Totals of relevant input data Cols.

76-80
Note:- It trill be required to read these cards in as descriptor cards if a restart
is neeessary.

(e) Grand Total Card.

A card with six totals of all corresponding input data from all cards

Card Col. Remarks.
1 - 15 GRAND TOTAL

18 - 20 Blank
2 1 - 3 0 Total of all input oard Cols. 26 - 30
31 - 40 Total of all input oard Cols. 36 - 40
4 1 - 5 0 Total of all input card Cols. 4 6 - 5 0
51 - 60 Total of all input oard Cols. 5 6 - 6 0
6l - 70 Total of all input card Cols. 66 - JO
7 1 - 8 0 Total of all input oard Cols. 76 - 80

(f) Error Cards. USB. OUTPUT.

Any Branch Stook Card with a code other than A. B. or C in Column 16 or bearing a
code other than J. K. or L in Column 17 must be treated as faulty. The erroneous
code must be replaced by an X in the appropiate oolumn and the card punched out with
all other columns the same as the input card.
Card Format. Same as Branch Stook Card except in either Col. 16 or Col. 17 whioh
should bear an X oode if the corresponding input column does not bear a valid code.

(g) Excess Stook Card.

Certain branches are overstocking items L6 (card columns J6 - 8θ)« Notification
is required if the stock value of these items exceeds £200. Stock evaluation may
be taken at 10/- per 100 items.

Card Format. Card layout is the same as for Branch Stook Cards with the addition
of a oode letter E in Column 20.

3. PROGRAMME SPECIFICATION.

Write a programme which reads all input data in the 80 Column mode and forms the
sums of all corresponding quantities on cards of similar type as follows:

W/H Code Goods Code Sums formed on Track.
A J 0/0
A K 0/1
A L 0/2
B J 1/0
B K 1/1
B L 1/2
C J 2/0

- 09-

W/fJ Code· Goods Code · Sums formed on Traok·
C K 2/1
C I» 2/2

In addition sums of corresponding columns from all cards are required in D.L.1A·
Card Columns 1 - 20 of descriptor cards are to be placed in the corresponding

minor oy&es of the sum tracks designated by the codes in Columns 16 and 17·
Note· All cards must be checked for valid codes in Columns 16 and 17 and in the event
of an error the appropriate column must be changed to an X code and an error oard
punched out· The stook value of quantities for items L6 are to be oompared with £200·
Any branch overstocking must be indicated by an output oard with All branch details as on
Branch Stock Cards and a code letter £ in Column 20« The cost of L6 stook is to be taken as
10/- per 100.

When input card processing is oomplete - indicated by an END CARD - the title from
the END CARD (Cols· 1 - 20) must be placed in the appropriate minor cycles of D«L*1A (after
the Z designator has been replaced by a blank oolumn) and the Grand Total and all
warehouse/goods totals are to be punched out·

4· SUBROUTINES·

All addition is to be performed in characters, i.e. using a decimal addition
subroutine No C 03· Full descriptions and instructions for use are provided*

To multiply the quantities L6 by 1.2 penoe it will be necessary to convert the
quantities from character form to binary· To do this use subroutine C15* details are
provided.

5. STORAGE ALLOCATION AND PROGRAMME METHOD.

(a) Use D.L. 10 as the buffer store for input card data while the next oard is
being read into D.L* 12·
(b) Use D.L· 9 as the auxiliary D.L. in which to form the sums of quantities
before transfer (via D.L.11) to the drum or to D.L, 1A.
(o) Error Cards and Excess Notification Cards may be punched while another input
card is being read, using the DUAL READ-PUNCH facility of the 80 oolumn machine*
(d) All programmes must start:

1 2 - 2 4 1
2 - 2 4 nz)

■ 1 ^
1 2 - 1 0 (16 m.c·)
12 - 24 1

-10-

DPCS2

6. PROGRAMMING PROCEDURE.

1 · Make out 80 column storage allooatlon sheets for each type of input and
output card.
2* Prepare a block schematic diagram of the problem·
3* Get the above work checked by a tutor before proceeding·
4· Prepare a DEUCE flow diagram from the blook diagram·
3· Code the programme·
6· In return for a similar service get your colleague to oheck the coding
thoroughly.
7· Submit the coding sheets for punching·
8. Whilst the cards are being punched, prepare a plan of campaign for testing
the programme on DEUCE·

Programme Construction and Testing.

Before any attempt is made to draw the block diagram for this programme or to
write the DEUCE flow diagram students should consider very oarefully the following
questions*

1. Have you read the Problem Specification?
2. Do you understand the requirements of the problem?
3· How is a Descriptor Card recognised?
4* Do you know the character value of "D" in DEUCE code?
5· Do you know where to find the value of "D"?
6* How is an END card recognised?
7· What is the value of Z in DEUCE oode?
8« How is a Branch Stock Card recognised?
9· What information exists in Cols* 16 and 17 of Descriptor Cards?
10· Is card order essential for descriptor oards?
11· What is the function of the codes in Cols· 16 and 17

(a) in the problem generally?
(b) in the programme?

12· If the code in Col. 16 is not A or B or C what action is to be taken?
13· If the code in Col. 17 is not J, K or L what action is requested?
14. Do you know the value of an X in DEUCE oode?
15· Is the same amount of processing required for all types of Branch Stock

Card?
16. Which type of Branch Stock Card require extra processing?
17· What extra processing is required for Type L cards?
18* What calculation will be necessary for the extra processing?
19· Are constants required in the calculation?
20· Do you know what these constants are (a) in decimal?

(b) in binary?
21· Do you know how to calculate the binary constants?
22· Have you prepared 80 col· storage allocation sheets for all types of card?
23· What purpose do you think is served by making out such sheets?
24· If the programme is constructed to calculate and prooess one card while

reading the next card is there a starting problem?
DPCS2 2f>· Until one card is completely read can any processing begin?

-11-

26. How does the machine know when a card cycle is complete?
27· How does a programme interrogate the reader (or punch) to find if a

card cycle is complete?
28« If there are 2000 Branch Stock Cards how long should the programme take

to run assuming 1($ error and excess cards?
29· If there are 2000 Input Cards and no error or excess oards how long is a

processing run?
30· If all 2000 Input Cards are errors or excess oases how long is a processing

run?
31· Is there any information on an end card other that Z in Column 20?
32· Do you know how to use the extra information?
33· Do you know how to change a Z to a blank oolumn?
34* Do you know why a restart facility is neoessary?
35* Do you understand how to restart?

Programme Testing.

It is essential for programmers to acquire efficiency in testing their own
programmes· This does not come all at onoe and entails a fair degree of pre-
maohine preparation.

A programme is not correct if it fails to pass through all the intended
instructions in the correct sequence. A programme is not necessarily correct even
when it does pass through all the instructions· Some of the instructions may not
do what the programmer intended and some essential steps may have been omitted·

To oheok programme continuity we use PROGRAMME DISPLAY and for correot
operation we can use a combination of test data runs and POST MORTEM·

Programme Testing Exercise No. 4.

The following paths must be checked
(a) The read-in path
(b) The A code path
(c) The B code path
(d) The C code path
(e) The three paths for J, K and L.
(f) The error code path
(g) The D code path
(h) The main addition path
(j) The excess stock path
(k) The punch out path
To test (a) to (g) omitting (f) we can use programme display· If we read a

card into the computer, allow another card to be read into DL12 and then stop the
machine we can cause the programme to be exeouted and punched out instruction by
instruction and take away a record for inspection off the oomputer·

- 12-

DFCS2

Instructions fo r Programme Display.

(a) Place a stopper on 12 - 10 following 2 ♦ ©
(b) In it ia l Input programme followed by a l l descriptor cards
(o) Machine stops on 12 - 10K
(d) Set request stop on the in struction a fte r 12 - 2kl
(e) Set Augmented Stop and release Request Stop and Programme Display·
(f) Maohlne stops on 12 - 10X
(g) Repeat steps (d) (e) and (f) u n til a l l descriptor cards are fin ished ·
(hJ Post Mortem
This i s su ffic ien t fo r the f i r s t run on the machine* When a l l errors are

oorreoted repeat the procedure to cheok correction o f errors and a lso inolude a*
Branoh Stock Card· These te s ts w ill reoord more than 9QfS o f a l l in stru ction s·

The next checks can be made to ensure that additions are being performed
oorreotly and to obtain sample error cards and fin a lly punch out the to ta ls ·

Special te s t data has been provided· I t w ill be noticed that the numbers on
the te s t cards are e a sily recognisable patterns and these cure intentional -
not aooidental·

" 13·

DPCS2

DPCS2

Descriptor Cards.
KIDDERMINSTER A J D OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
KIDDERMINSTER A I D 00000 OOOOO OOOOO OOOOO OOOOO OOOOO
KIDDERMINSTER A L D OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
READING B J D OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
READING B K D OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
READING B L D OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
DONCASTER C J D OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
DONCASTER C K D OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
DONCASTER C K D OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
GRAND TOTAL Z
Test Cards.
12345678988888 A J 11111 22222 33333 44444 55555 11111
12345678988888 A K 11111 22222 33333 44444 55555 11111
12345678988888 A L 11111 22222 33333 44444 55555 11111
12345678988888 B J 11111 33333 44444 55555 11111
12345678988888 B K 11111 22222 33333 44444 55555 11111
12345678988888 B L 11111 99999 33333 44444 55555 11111
12345678988888 C J 11111 99999 33333 44444 55555 11111
12345678988888 C K 11111 22222 33333 44444 55555 11111
12345678988888 C L 11111 22222 33333 44444 55555 11111

99999 199998 299997 399996 499995 99999
Excess Test Cards.
12345678988888 A L OOOOO OOOOO OOOOO OOOOO OOOOO 40000
1234567898888 C L OOOOO OOOOO OOOOO OOOOO OOOOO 39999
12345678988888 B L· OOOOO OOOOO OOOOO OOOOO OOOOO 39999
12345678988888 A L OOOOO OOOOO OOOOO OOOOO OOOOO 39999
12345678988888 C L OOOOO OOOOO OOOOO OOOOO OOOOO 40000
12345678988888 B L OOOOO OOOOO OOOOO OOOOO OOOOO 40000

DATA

DPCS2 Errop Test Cards,
RAMSGATE . B B K1 47199 K2 17789 X3 19947 K4 18808 K5 41009 K6 10094
CHELMSFORD L L L1 49521 L2 25125 13 21003 L4 41126 15 11264 16 39109
CAERNARVON M J J1 10090 J2 09989 J3 16315 J4 19432 J5 54132 J6 13421
WARWICK A A J1 17941 J2 29726 J3 19876 J4 37422 J5 23461 J6 08436
CARDIGAN N K K1 50102 K2 31114 K3 19633 K4 49110 E5 44932 K6 34119
LEAMINGTON A B K1 59014 K2 30122 K3 30721 K4 43002 K5 45591 K6 49660
HEREFORD S L L1 48663 L2 46002 13 41011 14 10498 15 49441 L 6 39456
PLYMOUTH J J J1 41563 J2 18359 J3 33789 J4 33459 J5 37541 J6 17883
GLOUCESTER A F L1 50009 L2 41036 L3 33331 L4 39993 L5 44193 16 19145
EASTBOURNE B B J1 24142 J2 23945 J3 35491 J4 17824 J5 29579 J6 27489
PORTSMOUTH K K K1 41099 K2 36120 K3 19904 K4 13050 K5 50054 K6 40550
RAMSGATE B B K1 47199 K2 17789 K3 19947 K4 18808 K5 41009 K6 10094
CHELMSFORD L L 11 49521 L2 25125 13 21003 L4 41126 15 11264 16 39109
ROCHESTER B B L1 38533 L2 10059 13 12952 L4 27651 15 25167 16 32100

LEICESTER J J J1 43696 J2 17302 J3 38745 J4 06300 J5 46302 J6 19119
NEWCASTLE - 0 - T C C J1 45660 J2 15944 J3 36021 J4 21009 J5 39191 J6 29092
NOTTINGHAM Z K R1 45556 K2 21772 £3 10975 K4 10635 K5 29703 K6 50006

GATESHEAD C Z K1 27716 K2 45615 K3 42295 K4 32105 K5 46635 K6 49715
STOKE - ON - TRENT Q 1 L1 47543 L2 35892 13 30952 L4 25983 15 29123 16 12602

MIDDLESBOROUGH C Q L1 43746 L2 18935 L3 37464 L4 19358 15 39553 L6 17734

828513 517760 541375 526699 739144 558933

DPCS2

Branch Stock Cards.
WORCESTER A J J1 12745 J2 1734 J3 40606 J4 12707 J5 40712 J6 24361
SHREVSBURY 16437 25621 31276 21202 20741 30461
BARMOUTH 11003 74542 56543 32339 30297 52642
HEREFORD 14927 13126 10210 15741 41123 40741
TEWKSBURY 9374 50013 13198 18547 50123 12036
CARDIGAN 12121 42172 18742 40120 12471 42712
CAERNARVON 10090 9989 16315 19432 54132 13421
PWLLHELI 19243 10010 10027 17415 20200 9760
WREXHAM 15741 18547 41111 12472 21309 8231
BIRMINGHAM 12707 21202 32339 31561 31316 12742
STAFFORD' 11333 28765 25073 20101 41745 40741
TENBY 14726 40777 42054 27419 17455 32172
WEST. BROMWICH 15438 30943 27341 54728 16234 10221
WARWICK 17941 29726 19876 37422 23461 8436
LEAMINGTON 14576 54731 54001 25433 33333 7321
GLOUCESTER 742 27310 10725 33765 12345 19877
STRATFORD 4761 18726 20403 34512 23456 40312
RUGBY 25789 54321 21297 43217 34567 12304
COVENTRY 18888 30010 34726 50743 45678 21340
WALSALL 20935 22291 21802 20198 19089 13240

279517 604556 547665 569074 589787 453071

DPCS2 Branch Stock Cards.
Y/ORCESTER A K K1 23691 K2 11623 K3 41474 K4 46701 K5 47301 K6 50888
SHREWSBURY 47234 47012 32097 41009 12345 10107
BARMOUTH 41032 36091 50001 39113 35241 39802
HEREFORD 16732 43906 49302 41107 40094 40109
TEWKSBURY 31032 20126 40631 50019 22391 44013
CARDIGAN 50102 31114 19633 49110 44932 34119
CAERNARVON 10777 35281 12494 10137 50922 50001
PWLLHELI 32100 49599 50029 16179 41394 46351
WREXHAM 11725 51329 47898 47961 23992 40111
BIRMINGHAM 54321 44304 10018 37099 11498 25551
STAFFORD 32098 45906 44478 19999 37332 40396
TENBY 50595 23101 24711 46113 10431 49991
VEST. BROMWICH 10091 11101 44900 11346 43101 10 119

WARWICK 44377 19333 10666 34611 45506 50101
LEAMINGTON 59014 30122 30721 43002 45591 49660
GLOUCESTER 40732 22322 10079 39003 41999 41332
STRATFORD 32159 16671 47988 41094 33595 19656
RUGBY 29012 30009 32109 50096 23101 50009
COVENTRY 10962 20883 46591 49865 44379 42391
WALSALL 30743 34361 43333 30149 10109 44999

658529 624194 689153 743713 665254 779706

DPCS2

Branch Stock Cards·
WORCESTER A L L1 45630 L2 10963 43 36408 44 46321 45 10664 L6 79591
SHREWSBURY 39019 49323 41991 49480 30496 39001
BARMOUTH 45905 12543 25002 23075 10966 33339
HEREFORD 48663 46002 41011 10498 49441 39456
TEWKSBURY 10447 31006 20914 50000 39555 10105
CARDIGAN 50CH2 29006 22544 36591 15069 90795
CAERNARVON 49634 39712 39355 49000 19099 11432
PWLLHELI 41019 49101 35942 32098 41019 20119
WREXHAM 31055 10098 41092 32117 10194 67359
BIRMINGHAM 10965 46669 22100 43109 39150 10336
STAFFORD 39999 41991 21998 41008 44225 29321
TENBY 41077 37399 13980 37999 21793 28693
WEST. BROMWICH 47988 40001 49310 40412 19914 99561
WARWICK 37911 30000 31049 10873 29974 39999
LEAMINGTON 21100 47992 49002 41114 49623 15194
GLOUCESTER 50009 41036 33331 39993 44193 19145
STRATFORD 48110 50014 29009 60019 19563 28665
RUGBY 41099 32694 19080 19843 19606 34005
COVENTRY 41013 49391 41009 20478 35125 21256
WALSALL 10936 39144 24066 44012 28119 27741

751591 734085 638193 728040 577788 745113

8
CO

Branch Stock Cards.
OXFORD B J J1 38G41 J2 47852 J3 21934 J4 12786 J5 27485 J6 48549
SALISBURY 46370 12534 37596 19592 29594 25942
DORCHESTER 31452 47548 15983 43659 17761 37802
SOUTHAMPTON 27567 26782 25798 24698 19567 41769
PORTSMOUTH 19238 33952 41543 19274 27891 28541
PLYMOUTH 41563 18359 33789 33459 37541 17883
CHATHAM 24739 21986 25351 13987 46782 32789
BOURNEMOUTH 25297 39752 29481 49012 39760 19789
WESTON.UPON-SEA 38473 16534 57781 37301 20917 39321
CAMBRIDGE 47541 44678 15762 29591 27819 47929
CHELMSFORD 29786 29782 18543 17908 39891 37417 Λ
ROCHESTER 17432 31894 27583 34909 45591 24919 Y
TUNBRIDGE - WELLS 36598 16782 43109 21578 32784 16584
HASTINGS 42731 36452 28081 33892 19861 48764
EASTBOURNE 24142 23945 35491 17824 29579 27489
RAMSGATE 19876 17451 27872 32594 31492 15972
CANTERBURY 45251 27789 31458 25869 27568 34851
NORTHAMPTON 29891 38487 29561 17898 14591 18706
Μ Α Τ Π Ε Μ Η Ε Α Ώ 19891 24682 37492 47582 17039 24894
KINGSTON 24768 39487 27569 21659 47079 41764

630647 596728 611777 555072 600592 631674

DPCS2

Branch Stock Cards.
OXFORD B L L1 50000 L2 19904 L3 10639 L4 20750 L5 25007 L6 39106
SALISBURY 46792 32149 49321 39424 42439 28999
DORCHESTER 19425 20963 41097 20694 49206 71094
SOUTHAMPTON 36913 21145 25151 36262 26226 15125
PORTSMOUTH 24519 30106 51251 40146 14604 12551
PLYMOUTH 46555 17762 14396 27474 47427 36914
CHATHAM 44439 26615 13411 29424 42944 34111
BOURNEMOUTH 10199 18735 45994 35592 35925 65009
WESTON .UPON-SEA 19000 33853 11041 29871 17298 11104
CAMBRIDGE 25125 21495 49069 49999 41009 95906
CHELMSFORD 49521 25125 21003 41126 11264 39109
ROCHESTER 38533 10059 12952 27651 25167 32100
TONBRIDGE - WELLS 35187 19901 16879 10982 10289 29125
HASTINGS 26706 43944 19678 20901 20009 91876
EASTBOURNE 21677 45655 39333 26309 30926 33339
RAMSGATE IO63O 19542 14506 30692 23069 10654
CANTERBURY 45211 13369 39156 IO669 10696 35691
NORTHAMPTON 32609 42519 19794 41092 10924 17999
MAIDENHEAD 49321 26794 37915 50002 49004 39777
KINGSTON 41099 41005 37944 19499 39435 22379

673461 530640 570530 608559 572868 761968

co Branch Stock Cards·
OXFORD B K R1 410¾ K2 36142 E3 49014 K4 13470 K5 41096 K6 m 6 o
SALISBURY 31065 43061 16530 21256 31015 15130
DORCHESTER 10654 24256 45106 45427 10596 10695
SOUTHAMPTON 320¾ 41407 20%3 26311 47091 41907
PORTSMOUTH 41099 36120 19904. 13050 500¾ 40550
PLYMOUTH 36455 12427 45536 17247 40555 45505
CHATHAM 109¾ 42113 19409 19992 333¾ 34933
BOURNEMOUTH 20656 29607 25606 31133 45931 43195
WESTON.UFON-SEA 17952 23108 15279 27471 21251 21251
CAMBRIDGE 19522 42721 15229 43871 25630 30652
CHELMSFORD 16531 41407 15316 19745 25559 29553
ROCHESTER 14442 17223 14244 57641 10459 45901 1ro
TUNBRIDGE - WELLS 16536 22101 13656 40072 45108 41085 wk1
HASTINGS 17655 43608 15576 47061 48321 32184
EASTBOURNE 27109 21307 21709 29857 28359 25983
RAMSGATE 47199 17789 19¾7 18808 41009 100¾
CANTERBURY 31098 31204 30891 35809 16118 18161
NORTHAMPTON 44118 24031 41184 40015 18106 40969
ΜΑΤΙΤΒΜΤΕΑ'Π 50001 40321 10Q58 34127 41056 10564
KINGSTON 49392 24310 32¾9 22676 37012 12370

575666 614263 488Ο86 605039 657720 570142

DPCS2

Branch Stock Cards·
MANCHESTER C J J1 30645 J2 10954 J3 41006 J4 25360 J5 35719 J6 10733
SHEFFIELD 19039 40910 32095 10999 50002 20966
HUDDERSFIELD 45590 39996 21009 21210 10196 49110
HARROGATE 43686 10734 10009 21660 41777 50000
STOKE - ON - TRENT 44701 40102 41067 33630 12979 39067
NOTTINGHAM 12005 10999 29444 40963 40791 30671
LEICESTER 43696 17302 38745 6300 46302 19119
RAMSBOTTOM 12902 14555 12954 41500 42166 37108
BLACKBURN 39402 41009 42519 21600 23016 41019
BLACKPOOL 10636 31027 26122 49513 41010 30009
ACCRINGTON 41099 46661 26301 42163 46360 41086 ήto
LANCASTER 10945 31092 21606 46302 31010 40554 1

CARLISLE 10355 41091 41635 45630 49098 10195
NEWCASTLE - 0 - T 45660 15944 36021 21009 39191 29092
GATESHEAD 30916 46915 463ΟΟ 30098 40617 10635
SUNDERLAND 49110 10996 22166 10091 30719 41009
MIDDLESBOROUGH 36506 29177 26070 19191 41999 10109
DARLINGTON 41009 13992 49125 10263 30673 30107
LINCOLN 41002 32110 39125 26309 33603 41977
KINGS - LYNN 30610 40009 27741 41090 IO616 31250

§
CO
Ι Ο

Branch Stock Cards.
MANCHESTER C K K1 9t35 K2 14990 K3 13906 K4 39061 K5 26351 K6 31010
SHEFFIELD 267¾ 21¾9 32149 41293 26309 46092
HUDDERSFIELD 42591 39602 10974 47901 261¾ 42210

H A f f R O f t A T K 13693 45112 15125 12551 41997 39109
STOKE - ON - TRENT 251¾ 10630 42551 25514 30972 38463
NOTTINGHAM 45556 21772 10975 10635 29703 50006
HAMSBOTTOM 19901 13578 46395 29918 59990 41053
BLACKBURN 17251 35385 12825 30867 40163 36033
BLACKPOOL 12525 49512 12563 46076 30792 40014
ACCRINGTON 21549 25521 6309 31019 20930 1696Ο
LANCASTER 35338 19005 21659 49105 40129 21663
r.ABT.Tsra 18753 10199 35908 41009 30663 1639 A
NEWCASTLE - 0 - T 27066 34449 49991 1C^1 49125 30630 »
C A T K R H m n 27716 45615 42295 32105 46635 49715
SUNDERLAND 13006 42519 42100 19553 29124 40016

MIDDLESBOROUGH 211¾ 16339 295¾ 30591 10066 16004
DARLINGTON 29063 25149 36911 40099 ^ 6 3 9915
LINCOLN 321¾ 47962 10863 30738 46302 15099
KINGS - LINN 10¾9 100¾ 12169 41008 2l6l6 12165

44972c 528742 485202 609984 641184 577796

1to
Branch Stock Cards.
MANCHESTER CL L1 29791 L2 37826 L3 49179 L4 26783 L5 30174 L6 12361

fy SHEFFIELD 37542 43824 42375 38424 34521 12047
HUDDERSFIELD 19748 23549 48791 49523 24135 31936
HARROGATE 26481 19793 48162 13799 49400 36094
STOKE - ON - TRENT 47543 35892 30952 25983 29123 12602
NOTTINGHAM 41763 28431 31746 42381 43294 91311
LEICESTER 34871 31849 37148 18394 22950 28153
RAMSBOTTOM 15542 29532 14255 35292 41493 95999
BLACKBURN 21653 37456 13526 46573 29329 19325
BLACKPOOL 14796 17798 46791 19877 49811 31,1,40
ACCRINGTON 33498 24652 43397 26542 32735 89605
LANCASTER 11897 39041 19781 41093 43101 32101
CARLISLE 13596 48503 35964 30584 10134 3942 ANEWCASTLE - 0 - T 48019 37911 10984 39117 40506 31933
GATESHEAD 25541 27843 41552 28437 15941 13202
SUNDERLAND 31734 42647 31347 27644 19499 34925
middlesborough 43746 18935 37464 19358 39553 17734
DARLINGTON 17926 20431 26179 40231 10123 30900
LINCOLN 26593 35749 «936 49375 34794 23088
KINGS LINN 32748 17847 27483 18747 19010 66313

575028 619509 663012 638157 619626 718011

