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1. INTRODUCTION.

The object of automatic programme is, of course, to reduce the effort 
required to write programmes, and this is achieved by using, instead of the 
computer’s own code of instructions, a pseudo-code which is-usually closer to 
the programmer's habitual way of describing the operations which he wants 
the computer to perform. (The word 'programmer' is used here rather in the 
sense of 'anyone wishing to write a programme', than that of 'someone specially 
trained to write programmes'). A programme having been written in a pseudo
code, there are two ways of making it produce the desired result, viz, by 
interpretation or by translation (or compiling, as it is often called).

In the first method, each codeword is interpreted as it is reached in the 
course of the calculation,'and many of them will therefore be interpreted 
many times. Since the interpretations occupy computer time additional to that 
required for the actual computation, interpretative schemes produce programmes 
which are slower than those written in the machine-code, although in some 
applications, e.g. in 'G.I.P.' and 'T.I.P.' (Ref. l), the amount of computation 
specified by each codeword is usually so great that the interpretation time is 
negligible. Another feature of pseudo-codes which tends to produce slow 
programmes when the interpretative method is used is that they do not fully. 
reflect the storage structure of the computer. It is, of course, desirable 
that a pseudo-code should be as free as possible from this structure, since 
it is alien to the conventional description of calculations, etc. On the 
other hand, the structure is designed mainly to achieve as high a speed of 
operation as possible for a given overall cost of the computer, and the neglect 
of it must cause a reduction in speed.

To satisfy both these requirements, which are incompatible in any interpretative 
scheme, and to avoid the repeated interpretation of codewords, we can use the 
computer to translate, once for all, a programme written in a pseudo-code free 
from computer-determined structure into a fast programme of computer instructions, 
taking the storage structure fully into account. The problems which are 
presented in the writing of a programme for making such a translation are, 
however, far from trivial.

In many interpretative schemes, some translation is also done, i.e. the 
original codewords are first translated into others with properties nearer to those 
of the machine-code, e.g. symbolic addresses may be converted to absolute 
computer addresses.- (Ae, at English Electric, usually reserve the term
'compiling' for this process, for convenience, although it is not essentially 
different from translation, as defined in the previous paragraph). n 
'compiler', i.e. a programme for doing this preliminary work, is much easier 
to write than a 'translater', and may save a good deal of interpretation time.

Descriptions will be given of four interpretative schemes which have been 
prepared for DEUCE, one of which has been referred to by Mr. Robinson’ (Ref. 1).
In each case, some compiling is done on the codewords before they are interpreted.
The pseudo-code used in the first of these schemes, called 'GEORGE', is unusual, 
being in fact an extension of a notation ('reverse Polish') suggested for 
mathematics (Ref. 2). The second scheme, 'Alphacode', was inspired by the 
'Manchester Autocode’ (Ref. 3), but attempts to make every codeword a statement 
in plain English. The third scheme, 'Steveemploys a special-purpose 
pseudo-code, similar in form to those used by '&.I.P.' and 'T.I.P.', but. 
intended solely for calculations on the thermo-physical properties of steam and 
water. The fourth scheme, 'Easicode', is a general-purpose scheme with a form 
of compiled instruction giving rapid interpretation.

There follows a description of an existing translating programme whose 
pseudo-code is known as 'Soda'. Both this and 'Easicode' retain some of the 
storage structure of DEUCE, which has in some degree facilitated their writing 
but which makes the writing of programmes in these pseudo-codes rather more 
difficult than in 'Alphacode', for example.
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Finally, some of the difficulties which arise in translating from a 
pseuao-code which is free from, computer-determined structure are discussed, 
together with some of the techniques which are to be used in a programme for 
translating from 'Alphacode' to DEUCE machine-code.

2. -• 'G-EOR&E*, the 'G-eneral Order Generator1.

In conventional mathematical notation, symbols denoting operations on 
two numbers are often placed between them, e.g.' a + b, a t b, while many 
■symbols for operations on one number are placed-in front of it, e.g. log a, 
sin 0. .The Polish notation unifies this by placing all operational symbols
in front of the number or numbers, while the reverse Polish notation'places all 
operational symbols behind it or them. Thus, in the reverse Polish notation
one would write, for example,' ab+, ab-s- a log, 0 sin-. It is found that these 
notations make the use of brackets hardly necessary-, since each operational 
symbol defines the number of numbers either behind it or in front of it which 
must be associated with it. For instance, in bc+ax, the' symbol + obviously 
operates on b and c, while the symbol x operates on a and the result of bc+, 
i.e. the corresponding expression in conventional notation would be (b + cj x a. 
The conventional expression from which this'is distinguished by the brackets, 
viz b + c x a, can be denoted, in reverse Polish, by bcax+. This-notation 
is, however, not unique, since besides interchanging c and a, one can also write 
this expression, as caxb+, just as one could write the conventional expression 
c x a + b.

Further examples are:-

Conventional Notation. -Reverse Polish Notation,

log <(a+b) t (c+d)ab+cd+t log 

a + b + c + d ab+c+d+

or ab+cd++

or abcd+++ -

2 sin (p+q) cos (p+q) pq+ sin pq+cos x2x

or pq+ sin pq+cos 2xx

Now, an advantage of the reverse Polish notation is that it can be 
regarded as .a computer pseudo-code, since expressions can be worked through 
steadily from left to right, each symbol being interpreted as an instruction, 
and this is in fact the basis of the '&E0R&E' pseudo-code. Part of the 
computer is regarded as a 'running accumulator', that is, a succession of cells, 
each capable of holding one number, through which all internal operations are 
performed. A. symbol representing a number, e.g. a, is interpreted’as 'fetch 
this number into the next vacant cell of the running accumulator’. (it is 
assumed that the symbol has previously been given a numerical value by reading 
in data,). A monadic operator, i.e. one operating on a single number, is 
interpreted as 'perform this operation on the last number in the running 
accumulator and overwrite the number with the result', while a diadic operator, 
i.e. one operating on two numbers, is interpreted as --'perform this operation 
on the last .two numbers in the 'running accumulator, taken in order, overwrite 
the first number with the result and clear the cell containing the second 
number'. Thus, the result of interpreting any expression is that the numerical 
value of the expression is to be found in the first vacant cell of the running 
accumulator, all the following cells having been cleared.



In 'GEORG-E', this basic notation is extended, to include operations on 
suffixed .variables, repeated operations, discriminations, the reading in 
and punching.out of numbers, the storing of results, etc., the properties of 
the notation being preserved as far as possible. For example, a doubly- 
suffixed symbol, a. . is. regarded as a diadic operation on the numbers i and j, 
is written. ij//a , J(//a being’ treated as one symbol) , and. interpreted as

■ 'fetch i into the next ,vacant cell of the running accumulator, fetch j into 
■the following one, overwrite i by the element (i, j) of the array defined by 
/a and clear the cell containing j'. This facilitates the specification of 
arithmetic operations on the suffices, e.g. is written as il+jl-//a,

which.can be interpreted using the specified rules.

As was mentioned in the introduction, some compiling is done on the 
symbols before.they are interpreted; they are in. fact translated into 
'keywords’, which are DEUCE instructions leading to stored routines for , 

.carrying out the.operations specified. Computation is carried through with
. floating-point .numbers, so . that the programmer need, not concern himself with 
their size. " ’

This scheme provides a. very compact way of writing a programme and, being 
.addressless, has none of the computer’s own structure in.it, but has the
disadvantage that the notation is unnatural.

5. 'ALPHACODE'.

.. The chief aim in designing, this pseudo-code was to enable someone not 
familiar with computers to write;programmes, and to this end the instructions 
take the form, as far as possible, of statements in plain English, free 
from computer jargon, but aided by mathematical symbols. In the first 
version of the scheme, all quantities involved in the computation were referred 
to.as X’s with suffices, and counters were provided, e.g. for specifying ■ 
how many times a part of the calculation should be repeated; these were denoted 
by.N's with, suffices. A later version, to speed up the interpretation, 
introduced the option of referring to temporarily used quantities, e.g,., 
intermediate results in evaluating formulae, as suffixed.T*s, but a programmer 
can ignore this if he wishes. ; (The suffices are usually written in line., 
with the letters, for convenience.)

An arithmetic operation is written, as, (for example):

X3 = XI PLUS X2
X5 = XJ MINUS XA

or X6 = ROOT . X5

Trigonometrical and other operations are included, and are written in the 
form: '

X2 = SIN XI
X6 = LOG- XA
XA = TANH X7

Repetitions of a group of instructions are specified by writing after the 
group an instruction like:

Count Nl UP TO 10, jumping to R2.

and putting the reference number (2 in this case) to the left of the first 
instruction of the group. The effect of this particular ipstruction would be 
to repeat the instructions between the reference 2 and itself 10 times and then' 
go on to the next instruction. (The instructions are normally obeyed in the 
order in. which they are written down)-. The reason for naming a counter, Nl, . 
to be used for this operation, is that this counter' can .then be used to modify 
instructions in the loop. For instance, we may ’write:

. Nl and N2 MODIFY next instruction. N3 also.

X201 = XI PLUS X101
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which will cause the sufiices of the X's in the second, instruction to be 
modified, by the current values of the corresponding counters in the modifying 
instruction. (The same counter may be used to modify the suffices of two 
or all three X's). '

It is admitted that instruction modification is a concept peculiar to the 
use of computers and it has been found that it does cause sone difficulty to 
non-specialist programmers learning 'Alphacode'; it is a limitation of this 
sort of pseudo-code.

It will be noticed that some instructions contain several words and that, 
in the example just given, one or two of these are in capitals. The words 
in capitals are those essential for defning the operations, and are in 
fact used by DEUCE for this, while the others complete the sense. The 
instructions are punched on Hollerith cards for reading into DEUCE, one per 
card, to simplify the ohanging of instructions or the insertion of others, 
and a 'pulling-file' is used from which a prepunched card for any instruction 
can be drawn, it being then necessary only to punch the X's, N's, R's etc.
Thus the programmer can specify the operation he requires in an instruction 
in any (unambiguous) way he chooses, e.g. he can ’write PLUS or +, he can 
write the extra words or leave them out.; as long as the . person punching the 
cards knows which to draw from the pulling-file,, the operation will be 
specified to DEUCE in standard form. The words which complete the sense are 
included in the prepunched cards, so that a punched programme can be printed in 
an intelligible form. Appendix 1 shows such a printed programme, produced by 
a card-controlled typewriter. The 'constant shown on the second line of the 
programme is 100 in floating decimal (l*0 x 10s), and the function .’AS BI&’ 
represents . The aims of this pseudo-code have obviously'not been fully' 
realised. (Where, the word defining an operation has more than six letters, 
only the first six are used by DEUCE. That is why only these nr., printed as 
capitals). . . .....

^his appendix also shows some of the more, powerful instructions included' 
in the code, together, with the method of specifying a subroutine of codewords 
such as that referred to in the instruction for solving a set of differential 
equations. It is assumed that the equations are of the first order and degree, 
with only the derivative on the left-hand side; the subroutine specified 
in the instruction must calculate the values of the right-hand sides, given . 
the current values of the variables. Instructions are also included for 
carrying out arithmetic and other operations on complex numbers. They are. 
designed in such a way that each pair of real numbers forming a complex 
number is specified as a single entity.

A feature of the scheme is that the programmer has the option of punching 
out intermediate results to help him test his.programme. The result of 
obeying an arithmetic or trigonometric function, etc., will be,punched out if a 
'P' is written .to the right of it, provided that a key on the DEUCE control 
panel is in the depressed p0sitiori while the calculation is being performed.
When testing is complete, the programme is run with the key in its normal • - 
position and, with no alteration to the programme, only the final results are 
produced.

4. 'STEVE'.

This interpretative scheme is. an example of one made specially for a 
particular sort of calculation, viz. that involving the thermo-physical 
properties of steam and water, -which occurs frequently in problems associated 
with steam turbines and heat exchangers. The pseudo-code used is very much, 
like that used by- 'T.I.P.T i. e. each instruction consists basically of fbur 
parts, a, b> c and r; a and’b. in general specify data upon which the function 
specified by r operates, and c -indicates where the- result is to be stored.
As in 'T.I.P.', the values of r correspond to a fixed set of functions, but 
a, b and c‘ refer to single numbers. Many of the functions are, of course, 
for calculating properties of steam or water under given conditions, but
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ordinary arithmetic functions are also provided, together with counting, 
discrimination, input, output and other, facilities.. As. in 'Alphacode', 
instructions can be given references to avoid, absolute addressing purpose for 
the purpose of jumping out.of sequence, and an optional stopping or punching 
parameter can be included to aid programme testing.

Special attention was paid in designing ’STEVE' to its behaviour after a 
failure during, either testing or use, the latter often occurring through 
faulty data.preparation or through trying.to stretch the scheme beyond its 
limits. For example, division by zero may be called for, or an attempt made 
to calculate some property of steam under conditions where steam would not 
exist. lifter a failure, cards are punched out showing the codeword at which 
it oocurred, its number and the values of the quantities a and b, so that 
the programmer can fairly easily discover the error even though he may not 
have been present during the use of the programme. An indication is then 
given to the operator that a failure has occurred, and if this happens too 
frequently the programme may be taken off the computer. Finally, a jump 
is made to a special reference which the programmer can use as he thinks 
best, e.g. to punch out partial results and go on to the next case.

This scheme, in common with those already described, uses floating-point 
arithmetic.

5. 'EASICOEE'.

Like '&.I.P.', ’T.I.P.', ’Alphacode' and ’Steve', this scheme employs 
a basic j-address pseudo-code, but whereas the others assume the 'pseudo- 
computer' to have virtually a single level of storage capacity, 'EASICODE' 
takes•account of the storage structure of DEUCE (Ref. 1, section 2). 6 blocks
of stores, named A to F, in the rapid-access store, are made available to. 
the programmer, each comprising 32 one-word stores. (The blocks are, in fact, 
6 delay-lines). 192 blocks of backing stores (tracks on the magnetic drum) 
are also available. The subroutines required for the most commonly used 
arithmetic and organisational functions are permanently available in. the 
rapid-access store, but those required for additional, functions must be . 
chosen by the programmer from the ordinary DEUCE subroutine library, read 
in with the programme and stored on the drum; they ,£re then ’brought into, 
the rapid-access store as required, by instruction's in the programme. All 
computation is in fixed-point arithmetic, all numbers other than those used for 
counting being assumed to have their modulus less than 1 and provision has been 
made for scaling numbers up or down by 2 or 10 during the computation.
The decimal codewords are read in, one per card as for 'alphacode', but are 
compiled into DEUCE instructions leading to appropriate subroutines, like the 
'keywords' associated with '&E0R&E'. These arrangements have produced a 
scheme which is much faster in operation than 'ALphacode', but which requires 
more skill and care in writing progr'ammes.

Codewords are basically of the form f(x, y) z, though the function may be 
organisational, e.g. for fetching a subroutine from the drum, instead, of 
mathematical. The function is represented by a number between 1- and 9b, 
numbers 1 to 33»being reserved for those permanently available. x, y and.z 
normally represent addresses in the rapid-access store, by the block letter 
followed by a number between 1 and 2, but in codewords causing transfers on 
the drum or between the drum and the rapid-acoess store they, may represent a 
block on the drum, by its number, or a whole block in the rapid-access store, 
by the block letter followed by 00. A check for the compatibility of f with 
x, y, and z is incorporated. An example of a simple arithmetic codeword is:

f x y z
1 A01 F29 B07

which would cause the number in store 1 of block A to be multiplied by that 
in store 29 of block F and the result put in store 7 of block;B. A transfer 
from the drum to the rapid-access store would have the form:

f x y z" '
19 101 - A00
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The codewords are normally obeyed in the order in which they are read-in, 
conditional and unconditional jumps being provided as usual and specified by 
a symbolic next address (S.N.A.) and corresponding symbolic location (S.L.) 
on the codeword to which the jump is made. These symbols are numbers between 
1 and 9b.

Loop-counting and modification of instructions are catered for, 
modification is specified in the same codeword as the instruction modified; 
and can take two different forms. An example of the first is:

f x y z M-j-

4 A02 C20 A15 010 010 010

the effect of which is to subtract each of the 10 numbers starting with
C20 from the corresponding numbers in the string of 10 starting at A02
and to put the results in A15 onwards. If any M is left blank, the corresponding 
address is unmodified, and the same number is used in each calculation of 
the string. An example of the second form of modification is:

f x y z

3 F32 A01 E32 B05 - B05

When this codeword is obeyed, the number (assumed to be an integer) in
B05 is added, modulo 32, to the addresses corresponding to and M,, viz.' 
x and z, e.g. if B05 contains 6, the codeword will cause E6 to be added 
to A01 and the result put in E6. (All three addresses can be modified 
independently if necessary). where the first form of modification can be used, 
it produces- the required results much more quickly than the repeated use of 
the second form.

Provision is made for reading in and punching out strings of consecutive 
numbers to or from a block of the rapid-access store, and to or from one or 
more complete blocks on the drum. Prom 1 to 6 numbers may be punched on the 
same card.

The programme-testing facilities provided include stopping the programme 
anywhere and, in particular, at a codeword whose number has been set on the 
control panel; jumping to an instruction not next in sequence; and punching 
out intermediate results. All these, and also the failure indications, have 
been arranged so that no knowledge of the binary notation is required.

Appendix 2 shows the functions which have been allocated fixed numbers in 
the present version of 'Easicode'.

6. kN EXISTING TRANSLATING- PROGRAMME.
The pseudo-code, 'SODA', associated with this programme (Ref. 4) 

assumes a pseudo-computer in some respects like DEUCE itself. It has a 
'short accumulator' a 'lower accumulator' and an 'upper accumulator', the two 
latter being combined in some instructions to form a 'double accumulator'.
(c.f. Ref. 1, Section 2). Arrays of data are stored on the-%rum, but access 
to them is through two 'working stores' ’which can usually be regarded as 
independent storage units of indefinite size, though for some purposes it 
must be recognized that each consists of only 32 positions and that data 
are automatically transferred to or from these positions at appropriate 
times. Constants are also stored on the drum, and there is similar access 
to them. Arithmetic and logical operations take place between a number in 
one of the accumulators and either a number in an array brought into one 
of the working stores or a constant, and the result remains in the accumulator.

That is, the code is 'one-address'; each instruction consists essentially 
of an address, which is usually symbolic, and a function specification which 
includes an indication of which accumulator is to be used. Arrays of numbers, 
and constants, can be arbitrarily named by the programmer, provided that not 
more than 5 alpha-numeric characters are used and at least 1 is alphabetic.
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For example, arrays may be named Al, A2, and so on, or, if "there is only one 
of them, simply ARRAY, while the constant x may be given the obvious name PI.
The address used in an instruction referring to such an array or constant is them 
its name. Provision is made for referring to any element of an array by 
mean's- of 4 index registers, any one of which can be specified in "the instruction. 
This method is used where the same or a similar calculation is to be done with 
each element of the array; if, however, the elements are disconnected and are 
to be used individually in the computation, the programmer can name the array 
by a. single letter and then refer to any element by this letter followed by 
the position of the element in the array, e.g. if the array is called A, then 
A0002would be the address: of its second element. One of the index registers 
i's also required when this sort of reference is made. Numerical addresses 
'refe'r to- (numbers /currently in the working stores or the constants buffer store, 
‘to; "tire Accumulators or to special constants.

Functions are specified by groups of 3 letters which have a mnemonic 
connection" with the description of the operation, e.g. C.3 represents ’Clear 
and^Add to the Exhort accumulator', while SBL represents 'SuBtfact from the ■
Lower accumulator'. A list of the functions built into "the scheme is given 
in Appendix 3« - Almost any standard DEUCE subroutine can, however, be used to

■ introdu:ifeu¥ ‘new function. Both fixed - and floating-point working are catered
■ for.

To enable the normal sequence to be broken, any instruction can be given 
a 'next instruction location' which is an arbitrary symbol of up to 5 alpha
numeric characters. The instruction to which the jump is made must, of 
course, have the same symbol, as its 'location'. Normally a next instruction 
location refers either to an instruction further back in the.programme or, 
at the entry to1 a loop for example, to the next instruction in sequence; in 
other cases'a special forward jump indicator must be included in the instruction 
or the translation programme will assume that an error has been made.

The only other part of an instruction is the 'decrement', which is used 
only with the counting functions (JIX, JXH, JXE). The. decrement nay be 
symbolic, in which case its numeric value is found in the corresponding constant 
address, or it may be numeric, and it may be positive or .negative. The function 
JIX causes the decrement to be subtracted from the specified index.register, 
the result remaining there, and a jump to be made to the specified next 
instruction if this result is positive. With both JXH and JXE, the specified 
index register is compared with the decrement; in the first case a jump is 
made if. the number in the register is algebraically greater than or equal to 
the- value of the decrement and in the second case a jump is made.only if they 
are equal.

? Control cards, with characteristic punchings, are inserted at various 
place's in the programme to define constants, extra DEUCE subroutines, arrays, 
loops (optional)j and the end of the programme.

Appendix 4 shows a 'SODA' programme for forming a vector product.. A 
loop control card could- be inserted between cards 9. and 10; its effect- may 
be to make the resultant DEUCE programme faster by causing a fresh block of 
instructions to be brought from the drum at the. beginning of the loop..

The translation programme reads in a set of 'SODA' codewords together 
with the control cards, etc., but not, of course, the data, on ’which the 
calculation is to be done. It then produces a set of DEUCE instructions 
for carrying out the calculation specified, as a complete DEUCE programme 
punched out on cards and ready for use in the normal way after adding a 
standard pack of subroutine cards and the data.

To assist programme testing, the translation can, at the discretion 
of the programmer, include a 'trace' facility. If the facility is included 
the DEUCE programme can be made to punch out, after sequences corresponding 
to most 'SODA' codewords, a codeword identification number and the contents 
of the accumulators and index registers, it can be made simply to stop and 
show the identification number after each such sequence, or it can be made 
to run normally. A correct programme should, of course, be finally translated 
without the trace facility to produce an efficient DEUCE programme.



• 7« SOME TRANSITION DIFFICULTIES. ■

The main source of, difficulty in writing a translation programme for a 
computer such a® DEUC$ is the multiplicity of its storage levels; there are 
a few rapid-access stores, a few hundred medium-access 'main' stores and a 
few thousand slcw^access stores. This multiplicity is introduced for

. economy's sake, of course. In DEUCE, the actual computation takes place in 
the 'fast' stores and instructions are obeyed from some of the main stores, the 
others being used to contain numbers not wanted immediately; the 'slow' 
stores usually gqfritain instructions or numbers, or both, to be used later 
in the programing.- To make efficient use of the computer care' must be taken 
in deciding which part of the store shall hold any particular number or 
instruction at any time during the running of the programme-. It has 
already been remarked, however, that a good pseudo-code should not reflect 
this structure, i.e. the codewords should all appear to be -equally ,
accessible and the'numbers' .should either be all .on . the same level or, if there 
are differences, they should be introduced only for the convenience of the 
pseudo-cod^ user, e.g. the X's, N's and T's in. 'Alphacode'. . Therefore, 
a translation programme; if it is to produce an efficient machine-code 
programme from a good pseudo-code, must allocate positions at the various 
storage levels to the (translated) instructions and to the numbers, according 
to the span of programme over which they are required and the frequency with 
which the/ are used, end must arrange, for -transfers- between the levels 
to take place at appropriate times. For-example, to quote extreme cases, 
ftn intermediate result which is used in the next codeword and never again , 
should be left in a fast store, while a group of numbers which are required 
at the 'beginning and also at the end of a long programme should be allocated 
positions in the slow store, though, of cour.se, they will have to be 
transferred, through the main store, to. the fast store when -they are used.
Also, £ loop of instructions which is obeyed many times shoulo, if possible, 
•remain entirely in the main store while it is being obeyed^ though it may 
J^,ve |o be put originally .in the slow store to make room for another ..part 
if the programme.

The problem of - storage-level allocation is complicated by .the topology 
of tbe programme. Loops may be broken-into from-other parts of .the programme, 
there may be alternative paths and there may be complicated combinations,of 
these, so that the requirements of the various paths must be -weiohed against 
each other.

An 'Alphacode' DEUCE translation programme is being developed, in which 
mtuiy of these difficulties are overcome. The techniques used are described 
in a .paper (Ref. 5) to be presented at the UNESCO International Conference on 
Information Processing in Paris in June. Briefly, the programme is first 
divided into sections which .have no branches or junctions except at their ends, 
and the references to numbers in each section in turn are examined for span 
and frequency, those with lowest span and highest frequency being given 
highest priority, in general, for the fast stores. Any vacancies -are then 
.filled by using topological considerations. A similar process is used to 
alio cate positions in the main stor^, though here subroutines of DEUCE 
instructions also compete for space. Finally, the instructions linking the 
DEUCEesubroutines are divided into appropriate groups and allocated main 
storage space, the instructions necessary to brin& them from the slow store 
having been inserted.
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APPENDIX 1.

(i) An automatically typed ’Alphacode’ programme.

I? A B FUNCTION C D

X0007 - CONSTAnt ■
+1.00000000 +002

7 Read 0006 DATA into X0001 onward.
N0001 = XOOOA MOVED
N0002 =■ X0005 • MOVED
N0003 XOOOb MOVED

1 NOOOA and NOOOA MODIFY next inst. 0000 also.
X0001 = X0001 ■DIVIDEd ■ ' by X0007

Count NOOOA UP TO 0003 , jumping to R 1
XOOOA = X0001 ■MOVED

6 X0005 0001 PLUS XOOOA
' NOOOA — ■ N0001 MOVED

XOOOb = .. 0000 PLUS. ’ 0001
2 X0006 = X0006. MULTIPlied by X0005

Count N0005 UP TO NOOOA , jumping to R 2
5 X0008 = X0006 MULTIPlied by XOOOA

X0009 = XOOOb MINUS 0001
N0006 and 0000 MODIFY next inst. 0000 also.
X0016 = X0008 DIVIDEd fey X0009
N0006 — N0006 PLUS 0001

If NOOOA is AS BIG as N0003 jump to R 3
NOOOA = NOOOA PLUS N0002

A X0006 = X0006 MULTIPlied by X0005
Count N0005 UP TO N0002 jumping to R A

JUMP to R 5
3 Batch 0000 Print N0006 RESULTS from XOOlb onward. Type 0

NOOOb = 0000 PLUS 0000
If XOOOA is AS BIG as X0003 jump to R 7

XOOOA = X000A PLUS X0002
JUMP to R 6
FINISH

(ii) Sone other 'Alphacode' instructions.

R A B FUNCTION C D

X0001 = sun 000b term SERIES, argument X0002
Solve 0003 DIFF.Equations at X0101 interval, using S 1

X0001 = 0050 step INTEGRai,interval X0021
Read X0010 from 0100 pt. GRAPH at X0300

1 SUBROUtine

END OF subroutine S 1
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APPENDIX 2.

The permanent 'Easicode’ functions, with their numbers:

1. Multiply. 17. Transfer Fast to Fast Store.

2. Divide. 18. Transfer Fast to Slow Store.

3. Add. .19. Transfer Slow to.Fast Store.

4. Subtract. 20. Transfer Slow to Slow Store.

5. Modulus. 21. Fetch Subroutine. •

6. Count Integers. 22.

7. Count up to. 23- Programme Constant.

8. Equal )
) (Conditional

24. • Read One Parameter (integer)'

9. Big As }
) Jumps)

25. Read One Number.

10. Exceeds )
)

Unequal )

26. Punch One Number.

11. 27. General Read to Fast Store.

12. 28. General Punch from Fast Store

13. 29. General Read to Slow Store.•

14. Buzz and Halt. 30. General Punch from Slow Store

15. Enter Subroutine (of codewords) 31. Finish.

16. End of Subroutine (of codewords)
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APPENDIX 3.

List of 'SODA' Instructions.

A. Instructions Pertaining to the Short Accumulator. 

CAS - .Clear ana. Add to the Short.

CSS - Clear and ^ubtract from the Short.

ADS - ADd to Short.

SBS - SuBtract from the Short.

STS - STore the Short.

SSL - Shift the Short to the Left.

SSR - Shift the Short.to the Right.

LAS - Logical And with the Short.

LOS - Logical Or with the Short.

LNS - Logical Non-equivalence with the Short.

B. Instructions Pertaining to the Lower Accumulator.

CAL - Clear and Add to the Lower.

CSL - Clear and Subtract from the Lower.

ADL - ADd to the Lower.

SBL - SuBtract from the Lower.

STL - STore the Lower.

SLL - Shift the Lower to the Left.

SLR . - Shift the Lower to the.Right.

LAL - Logical And with the Lower.

LOL - Logical Or with the Lower.

LNL - Logical Non-equivalence with the Lower.

C. Instructions Pertaining to the Upper Accumulator.

CAU - Clear and Add to the Upper.

GSU - Clear and Subtract from the Upper.

ADU - ADd to the Upper.

SBU - SuBtract from the Upper.

STU - STore the Upper.

SUL - .Shift the Upper to the Left.

SUR - Shift the Upper to the Right.

LAU - Logical And with Upper.

LOU - Logical Or with the Upper.

LNU - Logical Non-equivalence with the Upper. 

MPY - MultiPlY.

DIV - Divide

D. Instructions Pertaining to the Double Accumulator.

CAD - Clear and Add to the Double.

CSD - £lear and Subtract from the Double.

ADD - ADd to the Double.

SBD - SuBtract from the Double.
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ASD - Add. a Single length word t'o the Double.

SSD - Subtract a Single length word from the Double. 

STD - STore the Double.

SDL - Shift the Double to the Left.

SDR - Shift the Double to the Right.

E. Instructions Pertaining to Floating Point Arithmetic.

PRF - PRepare a Floating point number.

CAF - .Clear and Add a Floating point number

CSF - Clear and Subtract a Floating point number. 

STF - STore a Floating point number. ;

FAD - Floating point ADd.

FSB - Floating point toBtract.

FMP - Floating point Multiply.

FDV - Floating point Divide.

FSR - Floating point .Square Root.

FL& - Floating point Lo&arithm.

FEX - Floating point Exponential.

FSN - Floating point SiNe

FCS - Floating point CoSine

FAT - Floating point Arc-Tangent

F. Instructions Pertaining to the Index Registers.

LXP - Load an indeX register Positive.

LXL - Load an indeX register positive Less one.

LXN - Load an indeX register Negative.

ADX - ADd to an indeX register.

SBX - SuBtract from an indeX register.

STX - STore an indeX register.

&. Decision or Jump Instructions.

JSZ - Jump if the Short is Zero.

JSP - Jump if the Short is Positive.

JLZ - Jump if the Lower is Zero.

JLP - Jump if the Lower is Positive.

JUZ - Jump if the Upper is Zero.

JUP - Jump if the Upper is Positive.

JDZ - Jump if the Double is Zero.

JDP - Jump if the Double is Positive.

JIX - Jump on IndeX.

JXH - Jump on indeX High or equal.

JXE - Jump on indeX Equal.

H. Instructions Permitting the Block Transfer of Data.

RWO - Read into Working storage One.
RWT - Read into Working storage Two.

WO - Write from Working storage toe.

WT - Write from Working storage Two.
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I. Instructions Pertaining to Input and output.

RDO - ReaD' into One from the reader.

RDT - ReaD into Two from the reader.

RDC - ReaD a Card.

PHO - PuncH from working storage One.

PHT - PuncH from working storage Two.

PHC - PuncH a Card.

RDA - ReaD Array.

PHA - PuncH Array.

J. Miscellaneous Instructions.

HPR - Halt and PRoceed

STP - SToP

STZ - STore a Zero.

STO - STore a One.

STA - STore an Address unit.

3TH - STore a High position bit.

STM - STore a Minus one.

ACA - Activate Alarm.

SPA - StoP Alarm.

RIL - Read from the Input Lights.

WOL - Write into the Output Lights

COL - Clear the Output Lights........

cwo - Clear Working storage One.

CWT - Clear Working storage Two.

ENS - ENter Subroutine.

LVS LeaVe Subroutine.
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APPENDIX 4.

'SODA' Programme for Forming Vector Product (Order n 1024)

1. Type 3 3, A----- , 255, 1024 Define array A

2. Type 3 3, B ----- , 223, 1024 Define array B

Locat-
ion.

Function. Address. Next Index 
Inst. Reg.

Deo-
rement

Comments.

3. BE&IN RDC 00000 n in address 0

4. LXP 00000 1 Set n in index 1.

5. EDA A— Read vector A

6. EDA B—— Read vector 3

7. ENO A— A in working store 1

8. E7/T B— B in working store 2

9. STZ 00100 LOOP- Clear short acc.

10. LOOP- SBX 00104 1 Subtract 1 from index

11. CAU A— 1 A<. in upper acc.

12. MPY B— 1 A . x B . formed
J J

13. ADS 00102 Added to sum.

14. JXE LOOP- 1 00106 Count.

15. CWO Clear working store.

16. STS 00000 Store result in 0.

17. PHC 00000 Punch result.

18. STP Stop

Final Control Card. Punching.

19. ^pe 1 1, BE&IN Define entry.

NOTES Address 0 is in working store 1 (Hence the need for card 15)

Address 100 is the short accumulator.

Address 102 is the upper accumulator.

Address 104 produces a 1 in the form required for index registers.

Address 106 produces zero.

The numbers 255 ana 22J in the initial control cards define the

last tracks of the drum occupied by arrays A and B respectively.




