
S.R.43

The English
NELSON RESEARCH LABORATORIES

STAFFORD
Mil 'HE1ΔTICS DEP√1PiTMENT.

Telephone:—Stafford 700.

Electric co., ltd.

Report No. NS y 80

Date 25.11.57.

Reference

Order No.

Front Sheet.

Data Sheets 1-55.

Report by

PREPARING AND TESTING DEUCE PROGIt'MIES. P. J. Landin

SU⅛½EYi

This report describes the various stages of writing and
testing a DEUCE program with special emphasis on procedures
that make a program easy to check, use and modify. The report
has been specially prepared for distribution to members of the
December, 1957, DEUCE Programmers Course.

?. <F .
⅛L,JHE⅛1TICS DEP∕JSTI.⅞NT,

RF

CONTENTS

1. introduction
2. WRITING A PROGRAM ∣MSTfllXTlσ,∖)S
2.1. Inputting and Obeying the Instrument's'.
2.11. General Procedure.
2.11.1. A Self-contained Program Pack.
2.11.2. A Program Pack that uses Computer-stored Data.
2.12. Dividing a Program into Sections
2.13. Standard Program Sections.
2.14. The Rules for a Standard Program Section.
2.15. Fixing the Order in which Sections are Obeyed.
2.2. Input of Data.
2.21. Punched Input.
2.22. Manual Input.
2.5. Intermediate Results.
2.31. Computer-Stored Intermediate Results.
2.32. Auxiliary External Storage for Intermediate Results.
2.4. Programmed Checks.
2.41. Programmed Cheeks on tho Appropriateness of the Data.
2.42. Programming; Checks on tho Off-Computer and Computer Operations
2.43. Failure Action.
2.44. The use of Programmed Checks during Testing.
2.5. Output
2.51. Punched Output.
2.52. Visual (and Aural) Output.

3. DOCUMENTING A PROGRAM.
3.1. Information relating to the Program as a Whole.
3.11. Specification
3.12. Overall Logical Flow Diagram.
3.13. Program Pack List.
3.14. Pack Assembly Instructions.
3.15. Opera ting Instructions.
3.2. Information Relating to each Section.
3.21. Specification.
3.22. Logical Flow Diagram.
3.23. Computer Flow Diagram.
3.24. Coding.
3.3. Notation.
3.4. Precision.

4. HOW TO CHECK A fRCG⅞.H.
4.1. The Overall Logical Flow Diagram.
4.2. The Section Specifications.
4.3. The Section Logical Flow Diagram.
4.4. The Computer Flow Diagram.
4.5. The Coding and Program Pack List,
4.6. The Pack Assembly Instructions and Operating Instructions.
4.7. The Program Pack.
4. θ. The pack assembled for Input to the Computer.
4.9. Modifies tions.
4.999.
5. WHAT TO DO BEF< RE USING TEDS _ CO PURER;
5.1. Prerequisites.
5.2. Operating Instructions for the Program.
5.3. Information Available from the Computer.
5.31. With normal running.
5.31.1. Visual Information.
5.31.1. Punched Information.
5.32. By previously tampering with the Cards.
5.32.1. Visual Information

Continuation to : NS y 80
Sheet No. : -↑ φ

z.soi/23 NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
,....4πTU.i,LΔ1ICS D∑S>AK∏OT. ■

5.32.2. Punched Information
5.33. By interfering manually
5.33.1. Visual Information
5.33.2. Punched Information.

5.4. Test Data
5.999.

6. WHAT TO DO WHILE OPERATING _ THE COMPUTER
6.1. Emergency Drill
6.2. Further detail on dealing with unforeseen circumstances.
6.3. Making the best of a bad job.
6.4. Inconsistent Behaviour

7. TO TO DO AFTER USING THE C01CTT3iR
7.1. The Use of Incorrect Answers.
7.2. The Use of Program Display Results.
7.3. The Use of Post Mortem Results.

8. ERRORS OTHER THAN PrGRAM?gNG ERRORS
8.1. Pre-programming Errors.
8.2. Post-programming Errors.

Continuation to : NS y 80
Sheet No.: 2c

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
M∕ ttħwλt,tγ!r Dτrp.f wmw.

1. PRODUCTION

Much of the programmers' and. computers' time spent in testing and
altering programs oan be saved if more attention is paid to their detailed
design before writing them and to tho detailed test requirements before
checking them on the computer.

This report records information that is at present mainly learned
by bitter experience, often several repetitions of the samo bitter exper­
ience, and finally accepted as so obvious as to be not worth telling new­
comers to the craft.

It displays the available alternatives in many of the decisions
facing the programmer with special emphasis on producing programs that
are easy to check, use and modify.

∕

Continuation to: NS y 8(

Sheet No.; '∙J4>

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.

MATHEMATICS DΞPPMENT.

2. WRITING A PROGRAM:

This chapter describes some of the decisions a programmer will
(despite himself) have made by the time his program is written.

The best time to make them is sometime after writing the first
draft of the logical flow diagram and before writing the computer flow
diagram.

Most of the procedures suggested here are aimed at making a program
easy to diagnose faults in, easy to modify and easy to use. These aims
rarely conflict with one another or with rapid preparation of a program
sinco tho extra time spent in designing a program will bo more than repaid
by avoiding the lengthy job of salvaging a badly designed or undesigned
program.

There are some applications of DEUCE to which these recommendations
may not all apply in detail, but it is intended to lay out an approach to
programming that will have universal application, and illustrate it with
references to DEUCE programs.

2.1. Inputting and Obeying the Instructions.

2.11. General Eroqoduro.

2.11.1. For a solf-σontaincd program pack.

Each computer operation starts by establishing a standard computer
state. This is partly achieved by the operator (sec "Standard Operating
Instructions" by A. Birchnorc) and partly by instruction cards, in the
following way. A program that docs not use any computer-stored data starts
with tho three cards:-

Type I Initial Card ' (to establish correct me number).

Clear Drum ZP13∕l (to write zeros in all drum addresses and leave
both sets of heads at position z<ro),

Set Clock Track ZP 36 (to write on lf/15 a clock track with which
Sync Clock Track ZP37 and Clock Track Set or
Sync ZP34 and Post Mortem ZP29 can all synchronise).

These are followed by cords containing instructions to be stored in
the computer (together with instructions that will store them thαro).
The cards to do this arc any or all of

(1) Road to Drum ZP14.
Triads of information destined for tracks of the drum except
track 15/15.

(2) Fill Short Tanks etc. ZP35∙
Triads of information destined for short tanks, OPS, triggers

and head positions.

(3) Triads for DL’s 12 to 1.

The second of these items is too complicated to use, except in an
emergency to reconstruct a particular computer state. The third of them
can often be advantageously dispensed '.rith if one of the schemes described
in 2.2. to 2.5. is adopted.

Continuation to : NS y 80

Sheet No. : 4«

NELSON RESEARCH LABORATORIES
STAFFORD E. E. CO. LTD.
MATHEMATICS DEPARTMEI'iT.

2.11.2 For o Program. pack that uses .σ.ty.ρH^θΓ~s.^.0.r.0A ^a^^a»

A program pack that uses computer-stored data will generally be read
by instructions initiated by a program already in the computer, in which cose
the first three cards listed in 2.11.1 should be omitted.

In an emergency it may be necessary to break in on tho current
computer operation and the pock should then be preceded by Clock Track Sot
or Sync ΣP34 instead of the three cards listed in 2.11.1. (if mercury-
stored information is requirod then tho operator must clear TS COUNT man­
ually and use the run in key instead of the initial input key.)

2.12. Dividing p ⅛o x- m into Sections.

There arc 402 mercury addresses in DEUCS of which 256 can be used
as next instruction addresses, and many programs require a lot αoro tha,n
400 DEUCE instructions. It is therefore oftbn necessary to overwrite
instructions by other ones during the course of a program. Tho over-
vzriting program can be stored on cards or on the drum, and tho instructions
to transfer it to the mercury must be already in the mercury.

Transferring 32 instructions to a delay line takes nearly a second
from cards and up to 50 ns from the drum, and 32 instructions can take as
little as 2 ms to obey, so it oan save a lot of time if the program is
partitioned in such a way that instructions are obeyed as often as possible
without being overwritten; i.e. it is more efficient to overwrite programs
in between loops than in the middle of them. It also follows from those
figures that if there is room on tho drum to store all the program there is
little to lose by initially transferring the entire program from cards to
drum (via mercury) and then transferring from drum to mercury as required.

Tho gains are:-

(a) even if some instructions do have to be transferred to the
mercury on several different occasions, they only havo to bo
read from cards once and this is by far the longer transfer;

(b) a card pack can be made containing all the instructions with
only one copy of each part of tho program and without tho
necessity to interleave data with instructions each time tho
program is used. This simplifies tho operating instructions
and reduces the chance of operating errors;

(c) tho whole program or any part of it can be made re-entrant or
oan easily be adopted as part of an oven larger program if
1≈ter required.

Efficient partitioning usually neons that each item of tho overall
logical flow diagram is obeyed without interruption from program transfers
and so tho program consists of several sootions each with a specific function,
each working on numbers read from cards, and/or left in the computer by
previous sections, and each lenvin results in the computer for succeeding
sections and/or on cards.

If furthermore each section is as self-contained as possible and a
precise specification of what it docs is given then

(d) programming trine can often bo saved by using existing programs,
e.g, for input and output of matrices, in computations to
which they are not obviously relevant;

(c) it is easier to localise mistakes and to make alterations that
arc only local in effect.

Continuation to : NS y 80
Sheet No. : 5∙

z.50,∕23 NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
KΛINSIATICS DEP.'1OTWΓ.

2.13 Standard Rrograρι Sections.

In 2.14 a standard form for a program section is described that
has the following additional advantages:-

(a) All the transfer of program from cards to drum and from drum to
mercury can bo done with control programs that are already
written,

(b) These control programs have built-in program testing facilities,
e.g. for tracing the progress of a large program, rostering
Conor 1 if the program runs amok, re-starting at any required
section, and re-writing a single track during testing.

(c) The sections can be 'written so that they may be obeyed indiff­
erently from the drum or the reader. So if for a particular
use of tho program there is not ream on the drum for data and
instructions, a small rc-arrangemont will often permit the
instructions to bo obeyed directly from the reader without
requiring any drum storage.

2.14 The Rules for a_ St: n ar.j Program Section.

The following conditions do not greatly restrict the programmer and
allow him to use any of the control programs described below:-

(a) Each section of program is transferred to consecutive DL's
including DL1 before it is obeyed. If it is stored on tho
drum it is stored on consecutive tracks (lowest DL number in
lowest track number). It may have up to 10 DL's(although
in tructions in 9 and 10 will have to be transferred again be­
fore they can be obeyed.) The cards are punched with normal
initial instructions ,xcept for DL1 which has

blank
1, 0-1 (1) 26, 25 X
1, 0-1 30, 31 X
1, 9-24 0, 29 X

The instruction 9-24 x punched on the 4th rovz of the DL1 triad
is obeyed in me 31 if the section is obeyed from tho reader. The last
row of the triad is punched with the section number of the program at P17.
This is only transferred from the card to the computer when the section is
not obeyed directly from tho reader. It serves during testing to identify
easily the section currently being obeyed from tho drum.

(b) Each section starts

(l3i 9-24 X) (only obeyed if the section is obeyed directly
I3θ from the reader.)

and finds in the QS's (and in certain other short tanks
depending on tho c∙nτ∙rol program used) and DL’s, except DL11
and t' e ones it occupies, whatever was left there by the last
section.

(c) Each section can use any of the stores except 12?q ,,, track I5∕i5,

and the tracks containing program sections or the control program.
So the copy of the program on the drum is left unchanged (unless
replenished from tho reader) and each transfer of a particular
program section to the mercury places an identical set of
instructions there.

Continuation to : NS y 80
Sheet No. : 6.

z∙50l'a NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
I.TEKOTICS DEPART?NT.

(d) Each section ends by placing a paramotor that specifics,
what happens next and loads out with

12-1 (32)
130

and leaves the contents ,f the QS's (and of certain other short
tanks depending on the control program usod) and DL's except
DL11 to be found by the next section (which will overwrite at
least DL1.)

The form of the parameter, and which of the short tanks are pre­
served, depends on ^hieh control program is being used.

2.15 Fixing the Crier in which Sections are Obeyed.

Tho way in which the order of obeying the sections is specified
depends on the context and on the control program used:

(a) The simplest is that each section ends by placing a parameter
saying which section comes n-xt. It might have a choice of
exit pr ints s ,ccifyinr∙∙ different success, rs depending on
discriminations made while it is obeyed. (ZCOb/ ZC11 and
ZC13 all allow this.)

(b) One of the sections may use another section as a subroutine,
specifying not only which section is to be used next, but
also the re-entry point to itself afterwards (ZC11 allows this.)

(σ) There may be a master routine which uses all the other
sections as subroutines and docs nothing itself except this
(ZC(T0and ZC11 allow this. Per ZCO^⅛this ne.ster routine
is simply a list of the section numbers in the order of
execution with special facilities for loops.)

If all the basic program sections you require are already written
and all you want to do is to string them togother then you should use the
master routine method.

If you are writing nearly all the program yourself and the logical
arrangement of sections is fairly simple, method (a) is the best with per­
haps slight modification of the ends of existing sections to make them lead
correctly to their successors.

If the logic is more complicated, with sections using other sections
as subroutines and re-entering themselves, ZG11 must bo used.

It is possible approximately to rank tho throe control programs
mentioned in various ways;

By power and flexibility ZCOl⅛(but rather inconvenient for
using sections as subroutines)

ZC11
ZC13

By simplicity in use ZC∏1∕3
ZC13
zσιι

By efficiency in use of Z013
computer time and storage 1011/
once tho program is ZC0lp(threshold time of approximately 1 see
prepared and tested. ’ ,..r section).

Continuation to : ITS y 80
Sheet No.: 7∙

z∙so,'n NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
■ ILJDHEMiTT-ieS DKF1JTTMΞNT.

For further information on ZCOI^soc DEUCE Nows 10
on ZC11 see R.A.E. Technical Note MS 31

"The Assembly of Large Programs
for the Automatic Computer DEUCE".

on ZC13 see Library Program Report.

2.2. Input of Data

2.21. Punched. Da_to_.

Some programs require that each time they are used certain para­
meters are specified. Even if only one use is to be made of it a program
can often be tested more effectively by varying these. No program should
require parameters to be punched among its instructions each time it is usod
since this complicates pack assembly and provides opportunities for mis­
takes during both testing and use.

Nor should they be put into the computer via the I.D. Lamps or any
other manual input since this is slow and provides opportunities for un­
recorded oporatin ∙ mistakes. Nor should they be real from cards punched
with "initial instructions" used for reading instructions into DL's, since
this complicates data preparation and compels the use of binary. Instead
the extra instructions necessary to read them from cards (preferably
decimally punched) should bo written and these cards prepared with other
punched data, oach time the program is used.

A programmer must program not only the computer, but also the
people who will use his work (including himself) and his job includes
writing the instructions for preparing data and assembling the card pack
(sec 3.l). This should be done bef re finalising the form of the program.
It is frequently worth while to simplify data preparation at the expense
of program complication. Decimal is generally better than binary and the
logically simple arrangement of numbers with no unnecessary information
except checked redundancy checks (sec 2∙.42) may be better than the arrange­
ment that is easiest to program (as a trivial example, do not require
data to bo punched with P 54's).

The only exception to these rules is that sometimes the operator
is required t: give the computer information resultin' from decisions
mode during the running, of the program as a result .f the computer's
bch viour. The uso of manual input and the circumstances that may make
it unavoidable are considered in 2.22.

2.22 Manual Input

A program should be so written that tho operating instructions are
as simple as possible with minimal opportunity for mistakes,especially
irrevocable mistakes. Complicated instructions result in computer time
being wasted while the operator unravels and obeys them or, worse, in
delays in getting jobs done because they are disobeyed. In 3.5 the even
more important matter cf making them precise vzill be discussed.

The sorts of action required of an operator arc

(a) pressing keys and turning knobs

(b) inserting at specified places in the pack of cards to bo
road, cords that hove been produced by the computer

(o) punching cards and inserting them in specified places in the
pack ef cards to be read

I

Continuation to : NS y 80

Sheet No. : G.

z.mi/23 nelson RESEARCH LABORATORIES
STAFFORD E. E. CO. LTD.
lt2fflEt.5D.TICS DEPlJtTlITTT.

(d) recording cn paper information obtained by observation during
the running of the program.

These may be unconditional instructions or conditional on certain
behaviour of the computer. They will now be discussed one sort at a time
to see if they can be eliminated.

(a) Obviously net all Ray work (o.g. pressing, the initial input
key) can be avoidod. Complicated instructions such as sotting
up a large binary number on the I.D. keys can be replaced by
punching it on a card, which is preferable since it is recorded.
A particular sort of knob-turning that could almost always be
eliminated, but often with .groat programming inconvenience is
tho use of the punch numbering switches (4 counters, 8 fixed
switches and associated keys). It can happen that the rules
for operating them involve periods of idle computer time in
excess of actual computing time. This occurs especially when
a program originally intended for large values of some of its
parameters is used with small values of them.

(b) ‘These instructions can only be reduced to the extent that
internal storage is available.

(c) If precise operating instructions arc possible then this sort
can be replaced by computer instructions and thus punching is
eliminated. If not, then not.

(d) Again if precise operating instructions are possible this sort
could be replaced by punched output but possibly at tho expense
of complicating the subsequent card processing to an unreason­
able extent (e.g. if special cards have to be removed from the
output pack before printing.)

Any unpunched information indicated by the operator t. the c mρutcr
or given by the computer to the operator, should be coded as simply as
possible. For example, if a choice from four alternatives is to bo indicated
they should be coded'0,1,2,3 or 1,2,3,4 ro ther them 5,17,18,31. Further­
more, in the case of signals from the operator to the computer it should bo
raado physically impossible to give an irrevocably inappropriate signal.
Particular cases of this are that no program should rely on the I.D. lamps
being the samo on two consecutive glances at them er bo affected by the I.D.
lamps or (during calculation) the T.I.L. key except in ways that arc known
and declared in the specification.

The operating described above is the operating that is planned
as part of the program’s actual use, not the operating that the programmer
docs during testing-. For example, a program that d. es not use manual
input (other than essentials such as initial input key) or visual output
is easier to operate in use and consequently easier to test, but this does
not preclude the use of these devices during testing (see 5 and 6.)

2.3. IntoTOed.iato ∙⅞c,s.uΛ⅛*

2.31 Computor-Storod Intermediate .Results

Each section of program is given numbers (including parameters,
triggers, etc.) either by its predecessors or by tho operator, and produces
results either for its successors or for the operator. All these numbers
except what are originally given to the computer on cards end what arc
finally taken away for subsequent processing are intermediate results of the
current computer operation.

Continuation to :NS y 80

Sheet No.: 9 ∙
z∙50,'m nelson research laboratories

STAFFORD E. E. CO. LTD.
½YTHEIiATICS DSPAJRTlTS'τT.

Thα time taken to obey a section is made up of the time to trans­
fer the instructions to the mercury, the time to transfer its data and
results to and from the mercury if this is necessary, the access time to
instructions and number stores in the mercury and the productive computing
time.

So other things being equal it saves computer time to reduce tho
number of program transfers by operating on as many numbers as possible with
one section while it is in tho mercury. Also other things being equal it
saves computer time to reduce tho amount of number transfers by operating
with as many sections as possible on the same numbers keeping intermediate
results in the mercury. Since these usually conflict, other things are
rarely equal and the decision is sometimes difficult. Throe cases are
worth special attention;

(a) If the sizes of the batches of intermediate results arc
parameters of the calculation (as in matrix operations or
evaluating formulao for several cases) then using mercury
storage limits these parameters much more severely than
using drum storage, especially if the drum addresses are
programmed parametrically and can be easily fixed at a later
stage or even calculated by the program. This is useful
if tho most efficient use of tho store depends on more than
one independent parameter.

(b) If the access to intermediate storage is mainly consecutive
then much less time is lost on drum transfers than if it
is widely scattered. There are in the library subroutines
for referring to one or more consecutive strings of drum
addresses via buffer DL's.

(c) If the computer flow diagram is logically simple with only
very small and vory largo loops (if any) then by using very
small sections most of the mercury store can be released
for intermediate results. In this case access to instruct­
ions on the drum can bo consecutive and done directly with­
out rofo.enco to a drum-stored control program. This caso
usually arises when a great deal of rather patternless
computing is being done with a moderate amount of unhomo-
goncous data (never exceeding say a few hundred numbers.)

2.32 Auxiliary Extcι∙nal Storage for Interoediato R^suLts,

Intermediate results racy be stored on punched cards. This can
arise in three ways:-

(a) There is not room in the computer to store all the inform­
ation it must remember at a certain stage of tho calculation.
Alternatively, there would not bo in the largest cases the
program can deal with, and so it uses cord storage indis­
criminately in all cases.

(b) The computer is required for quite different work between
producing and roquiring tho intermediate results. The
time lag might be imposed by outside circumstances or night
bo to allow other (final) results to bo examined.

(c) The program uses previously written programs whoso data or
final results are punched but arc merely intermediate data
in the current operation (o.g. card to card binary-decimal cr
decimal-binary conversion.)

Continuation to : NS y 80

Sheet No.: ^∣ θ∙.

2.5GP23 NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
lΓJ,TΣC3i.7ΓICS EERl'J2∏,α3TT.

Causes (b) and (c) may force the use of "operator storage” for
intermediate results by outputting visually an item of information that must
be input manually at a later time. (e.g. how far a job that is being
temporarily broken off has got.) This should be avoided wherever possible.

2.4. I⅛og,ramned. Chocks.

2.41. Programmed Checks on the Appropriateness _of Data.

Most programs are only intended to work on certain special cases
of tho data that one might conceivably give them. For example a program
may read and store decimally-punched data in batches of a size paramet­
rically specified and then perform an iterative calculation on them. If
the cards are nonsensically punched, if a batch is too large to fit on the
drum, if some parameters that should be equal arc not, if the operator
lights the P.32 lamp when the program required Pl, P2 or P3 to specify a
three-way choice, if the numbers are such that an intermediate result
exceeds capacity or the calculation involves dividing by zero, or if they
fall outside the range of convergence of the iterative procedure then
something will go wrong. Either the program will interpret inappropriate
data as best it can and unapologetically produce meaningless answers, or
it will misbehave (by going into a loop or stopping) in a rather random
way, or it will give some result that can bo interpreted by reference to
its specification as moaning "nondccimal punching", "incompatible dimensions",
etc.

This last alternative is much the most desirable of the three since
it helps the operator or user to trace the (possibly off-computer) error
that caused it. So a program specification should say what its outcome
is for any data whatsoever, however inappropriate.

Just as a program may test the appropriateness of its data, a part
of a program or a single section or subroutine may do the same. In this
oase data may consist not only of cards and manual input but also of inter­
mediate computer-stored numbers. The above remarks apply to these checks
as well except that the fault about which they can supply diagnostic evid­
ence may be in a previous part of the current computer run, rather than in
a precomputer operation like copying or hand-punching.

The outcome of a program should be specifiable not merely for tho
case of one data error but forcombinations of them. All these can bo
deduced from the overall and section logical flow diagrams which should be
so designed that the most useful thing happens in each case. For example
a store check on an operand should if possible be tested before testing tho
arithmetic of the operation in question, since inappropriate data might
cause an arithmetic t⅛ilur* ⅛u⅛z⅛>β4∕vi<je- versa. „ . λ,∙LcC> U> roxtax ∏- ctaU.

2.42. Programming ohocks_ on the jeff-computer and computer operators.

The checks just described arc only possible where there is re­
dundant information in the data. The proventitivc and die,gnostic use of
checks is so .great that redundancy is sometimes introduced into data just
sc that it can be checked. Wherever possible a calculation should bo
checked by an independent calculation and storage checked by a stun check.
Linear operations provide many opportunities for distributive checks that
take a negligible amount of extra time, but with some calculations it is
difficult to do more than "see if the answers look sensible”.

Continuation to : NS y 8C
Sheet No.: 11.

z.a>./23 NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
M' THEM ’ TIGS DHAPT! HIT.

A check sun is usually a nonsense sun of words (or smaller groups
of digits) added together without regard for πeaningfulness modulo the
range of the group of digits. It can he computed each time a hatch of
numbers is ;?roduood and then checked against a freshly computed sum when­
ever the hatch is used. (The particular case in which the group of digits
is ono hit is callcda parity check.)

A check sum prepared with the earliest written copy of a set of
numbers and carried through and chocked at each stage of copying, punching
and transferring to the computer store can be used to detect errors both
off and on the computer.

While it is true that every redundancy check on appropriateness of
data could also be failed owing to a computer fault, there arc some redund­
ancy checks that can only be failed because of a computer fault. But this
is only true if previous checks have prevented anything but appropriate
data getting to this point. For example, a sum check may be failed because
part of the batch of numbers summed has since been overwritten owing to the
inappropriate length of another batch. But if that and all things like
it were previously guarded against trie sum check would be entirely a check
on the operation of the computer.

2.43. Failure Action.

The best thing for the computer to dc after failing a check is
automatically repeat the faulty operation, but this is not possible if the
necessary intermediate results have been overwritten. At the worst the
computer can loop back to tho branch instruction that caused the failure.
This has several advantages,

(a) it is quite determinate

(b) the operator can at least discover what is the direct cause
of failure (e.g. 14 and 15 being unequal)

(c) during testing it can be passed by manual intervention.

In any case some indication of what has happened should be made
and if this is visual the operating instructions should say what the
operator is to do about it. Tho standard visual failure indications are
described in 2.52.

2.44. The use of Programmed checks during testing.

Check failures will be much more noticeable to the programmer as
clues to programming errors than in their ultimate purpose. This alone
justifies some care in making tho chocks comprehensive and mutually inde­
pendent .

2.5. Output

2.51. Punched output.

Just as a programmer must consider how the data is to be prepared
so must he consider what subsequent processing is necessary. Again more
complicated programming may bo justified by loss complicated off-computer
operations. In particular all the information to be produced by the
computer when the program is used should bo punched on cards in a printable
form.

Continuation to :NS y 8(

Sheet No. : 12.

z∙soι'a nelson RESEARCH LABORATORIES
STAFFORD E. E. CO. LTD.
TuMJ4ι□.TCC DEKJffiWTT. .

2.52. Visual ∕ppd Aural) Output.

The only exception to this is information which the operator
must act on while the program is still running. This information must
ho output distinctively and simply via the IS and OPS lamps, the buzzer
and sometimes the sequence of reading and punching cards.

Tho most frequent use is for failure indications. Despite the
difficulty mentioned in 2.42. of classifying checks according to their
function certain conventions exist.

Visual failure indications use the IS lamps. The computer reaches
some characteristic stopped instruction and after a onc-shot docs the most
useful thing possible in the circumstances, e.g. repeating the incorrect
operation or at worst returning to the branch instruction that did the check.
Approximately, the buzzer is sounded by computer failures (i.e. computer
stum cheeks, arithmetic checks and other checks on redundancy artificially
introduced in the computer) and not for data failures (i.c. on sum checks
and ocher checks on redundancy artificially introduced outside the computer
and also on natural redundancy arising from the possibility of providing
inappropriate data).

The 3toppod instructions in common use are;-

29-31 X for a computer sum check failure

24-31 X for an arithmetic failuro

n-29 X for a punched stum chock failure (discrepancy in n)

31-29 X for incompatible parameters.

Continuation to : NS y Qo

Sheet No. : 13.
Z.50./23 NELSON research laboratories

STAFFORD E. E. CO. LTD.
IATEHATICS DEIVJXGΠ∙XTT..

3. DOCTOWTDTG A H⅞OGRAM.

There is more to producing a computer program than "writing and
coding a flow diagram of instructions that works. It must be recorded
in a way that makes it cosy for anyone (including the programmer in six
months tine) to use or modify. The information needed for this is
listed below. There ore three reasons why it should bo written down
before rather than after starting to test the program.

(a) The act of documenting the program frequently draws
attention to unsatisfactory or incorrect features.

(b) It gives the programmer a better overall picture
of his own work.

(c) The resulting documents are extremely, useful in chock­
ing the program and localising and successfully
correcting mistakes detected during testing.

3.1. Documents relating to the .Program as a wholo.

3.11. Specifioation.

Given a particular program together with its operating instructions
(and provided that they are both unambiguous in outcome, which they may
not be) and a stopped computer, the following things may affect the out­
come when it is obeyed.

(a) The initial state of the computer; that is the contents of
its 8595 stores (including TS COUNT) the ID, OPS, triggers
head positions and states of the reader and punch.

(b) The punching (in sensed columns) on any cards (other than the
program cards) that are ρι-eviously prepared and assembled
ready for putting in the reader hopper.

(c) The expressed intention of the user, if this is invoked by the
operating instructions (o.g. tho operator may be required to

’ put on the Pl ID lamp if intermediate results ore required.)

Usually quite a lot of (a) (and maybo of (b) and (c) is
irrelevant to the outcome.

The outcome consists of:-

(d) The final state of tho computer (including TS COUNT which
may be important since it determines, with other things, for
example, whether tho program is re-entrant.)

(c) The punching on output cards (including that produced by the
punch switches.)

(f) Any information (such as tho appearance of lights on the
control panel or the rate of punching cards) that may be
collected by the operator during the running of the program
as a result of following tho operating instructions.

Usually quite a lot of (d) and (f) (and maybe of (o)) is not of
interest since it does not affect the course of subsequent events inside
or outside the computer.

Continuation to : NS y 8C
Sheet No. 1 4∙

z.Mi/23 NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
j u∖TUDMATICS DEPAWΠOT.

The specification of a program defines (the interesting ports of)
the outcome for certain particular forms of initial state and/or input
and/or users intentions. For example a program for solving linear
equations by successive condensation about the largest possible pivot
might produce the solution, or a measure of bad behaviour of the given
matrix, or diagnostic indications of faultily punched data, according to
the data that it is given.

So the specification has two parts. First the sort of data for
which it will produce satisfactory results and specifiable unsatisfactory
results (thebe should together be as exhaustive as possible.) Second
the outcome for any such data.

3.12. The over"11 logical flow Diagram.

The overall logical flow diagram is a flow diagram in which each
item is either one section of tho program together with the questions by
which it chooses its successor or else a question asked with the same
purpose in the master routine if there is one (see 2.14).

It ties together the other information relating to tho program as
a 7/hole with that relating to each section (see 3,2.) For example any
two sections that are consecutive hero must have precisely matching final
and initial conditions as stated in their individual specifications.

3.13. Program pack List.

Tho program pack list is a complete list of the cards to bo put
into the computer that are not specially prepared for each use. It
identifies in order all the cards by referring to card numbers and routine
numbers of which complete details arc given in the coding or in the
description of previously written routines that are being used. It
specifies any cords (including initial cards and program parameter cards),
not described in the coding sheets of tho various sections.

It might si; .ply bo card 0, Type I, Initial Card

cards 1-15 (see coding)

but could be longer if many library routines, some of them
slightly modified, wore used.

3.14. Pack Assembly Instructions.

The cards put into the reader hopper are of the following kinds;-

(a) program pack other than cards requiring special punching
for each use (a requirement to be sternly avoided.)

(b) data cards and all other cards in which punching is
specially done preparatory to each use of the program.

(c) cards produced by the computer during tho current operation.

(d) cards punched by the operator as a result of decisions based
on the behaviour of the computer during the current operation.

The pack of cards to be passed through the reader is assembled
in trays so that they can be loaded into the hopper and removed from the
stacker precisely in tho assembled order without regard to where the pack
is split. The position whore cards of sort (c) and (d) might be inserted
during the operation are marked with identification of these cards (by

Continuation to : NS y 8(
Sheet No. ; i5∙

2,M∣∕23 KELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
R.,∙F1S.4TIC3 DΞPAKΓjPNT.

referring to tho operating instructions, which include some description
of what the computer docs; see 3.15.)

3.15. Qporating Instructions.

The instructions to tho operator arc about

(a) when to press and turn which keys and knobs which way.

(b) which output cards if any to insert into tho reader pack
at marked places.

(c) what to punch on what cards during the running of tho program
(to be inserted into the reader pack at marked places)

(d) what information about the running of tho pr∙ gran to record.

It sometimes hap >cns that a program is intended to do one of
several things at the discretion of the user and indicated by manual
control. Such a device should if possible be replaced by a punched indic­
ation that can be previously prepared. If it is not then some operating
instructions will be conditional on the user's previously expressed in­
tention c.g. "If intermediate results arc required put Pl on the ID after
the 1st sot of cards have been punched." They may also be conditional
on the outcome of the program, c.g. on failure indications being given.

Just as it is possible to write a program that has no determinate
outcome (c.g. by disobeying tho reader timing rules) so it is possible to
write imprecise operating instructions that have no determinate outcome.
Both those should be avoided. Operating instructions can be written as
a flow diagram in which each item is cither a description of computer
behaviour, a quostion on computer behaviour followed by a branch, a
question on user* intentions followed by a branch, or an instruction to
tho operator of sorts (a)to (d) above. All cards referred to must be
precisely described.

Though this flow diagram may not always be the most suitable way
of presenting the information to an operator it is extremely valuable in
exposing wrong or imprecise formulation and should bo written before the
instructions are finalized.

In the final version, statements and questions referring to the
computer's behaviour can bo usefully be distinguished by insetting them
from those referring to the operator or user.

3.2. Information relating to csσh soσti.n.

3.21. Specification.

The specification of each section exactly follows the pattern
described for the whole program in 3.11. Computer-stored information is
more usually relevant since the data and result of one section are often
merely intermediate results of the whole program. It is sufficiently
precise for any mistake in linking two sections together to be evident
just by looking at the overall logical flow diagram and the spocificaticns
of the sections concerned. In this way the effect of a modification
within a section on other sections or on tho whole program can rapidly
bo assessed and mistakes arising from unforeseen remote effects can be
avoided.

Continuation to : NS y 8C
Sheet No.: 16,

x-so./n NELSON RESEARCH LABORATORIES
STAFFORD E. E. CO. LTD.
IT ■ THFILITICS DEPiJ!TliDNT. .

The specification states

(a) stores occupied, i.e. which DL,s are overwritten with the
instructions before they are obeyed.

(b) stores used, i.e. which stores (other than the ones
occupied) either affect by their initial contents the out­
come of the section or are themselves affected by the
section. (Note that by removing and replacing the contents
of a store, a program can refer to it and yet not use it.)

(c) of those stores used, which affect the useful outcome and
what they contain initially.

(d) of those stores used, which are loft containing information
that is relevant to subsequent sections (i.e. useful outcome)
and what function of the data they are loft containing.

(in 3.11. it was pointed out that the information stores of the
computer include TS COUNT, TCA, TCB and head positions.)

This can conveniently be given in columns with one column for the
short tanks, triggers, etc. and one for each DL occupied or used, but long
strings of homogeneous numbers can be more economically specified. Any
store not marked or referred to in the specification is preserved by tho
section.

It is possible that some addresses used might only be specified
parametrically, c.g. some library matrix routines use drum addresses that
are calculated from other numbers found in explicitly given addresses
(that state,in this case, at what address the stored matrices start.)

3.22. La ∙iσal Flow Diagram .

The logical flow diagram of a section consists of instructions and
questions in English and algebra. It is followed very closely by the
computer flow diagram.

3.23. Computer Flow Diagram.

The computer flow diagram consists of instructions and subroutines.
It is annotated in English and algebra to show in detail the correspond­
ence between it and the logical flow diagram. In particular each branch
point is labelled with the question it asks and the possible directions
labelled with tho answers to this question. (The branches of discrimination
instructions arc also labelled + and -, or Z and NZ.)

If a subroutine is parametric tho values of the parameters are
written beside it. If it is modified it is marked MOD. Any subroutine
must in its turn be separately documented with specification, flow-
diagram and coding just as for whole sections. Again, relevant inform­
ation about triggers etc, is included (for example sone library sub­
routines assume T.C.B. is off at entry and some leave it off at exit.)
In the case of library subroutines used unmodified, the information in the
published write-up is itself almost addquato.

Taste instructions have the form A,1-1,O,T (or A,1-1 (2) 31, T
if it is also required to waste time during say multiplication.)

Destination zero instructions should be written

⅝<j)

Continuation to : NS y
Sheet No. : 1 7.

Z.S0./23 neLSCN RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
-≈ -∙ ΦΓg∙gmιcs DEPART' - nt.

where I is the address containing the basic instruction of which a
possibly modified version is being obeyed from S.

3.24. Coding.

The coding specifies all instructions, numbers, subroutine para­
meters, punching on first four rows of triads, card numbers, and every
other contribution made by tho programmer to the cords of the program
section. There is one column of coding for each DL occupied, whether
or not it contains instructions written by the programmer. Stores
occupied by a subroutine arc marked with identification of that subroutine
(the subroutine coding is part of the subroutine's documents.)

Occupied stores required to be clear at tho start of a section
arc marked "zero". Occupied stores where initial contents are immat­
erial to tho useful outcome of the section but which arc affected by the
section are marked "usod" or possibly with some algebraic symbol.

Destination zero instructions (except possibly 17-0, 18-0) are
coded O,S-O,T,T.

3.4. Notation.

The specifications and flow diagrams described above often use
symbols to identify items of information. It frequently happens that a
particular symbol is U⅛cd to refer to a number or instruction that varies
as the program proceeds. This can give rise to no ambiguity provided that
not .nΛr,0. .θn.o. .vci',,3Λc51. °f* ΛΛ qx^-s^cs 3-n the computer r input cards aΛ :
time. If this condition docs not hold, distinct symbols must be used,
preferably prefixes and suffixes that indicate the relationship between
the various items concerned. In particular this implies that any item
punched on an instruction card must be distinguished from modifications
of it. It is a common mistake to forget that each time a section of
program is transferred to tho mercury all the stores occupied by it are
put back into the same state. Each reference to a number must specify
the binary point since numbers (including instruction modifiers and count­
ing numbers) may occur in versions with different numbers of binary
pie ecs.

A difficulty that commonly arises is that tho algebraic n tatiαp
of already existing parts of the program are net in line with one another.
In that case tho symbolism of any section or subroutine must bo defined
(in writing) in terms of tho symbolism of the ’whole program or section of
which it is a part.

3.5∙ Precision.

One purpose of this arrangement of information is to facilitate
the comprehensive checking not only of coding but als∙. of logic that is
described in 4. It will be shown there how all checking can become
m..rc or less automatic provided that the information being checked is
accurate and absolutely precise. Absolute precision is quite possible
and the criteria for it arc:-

(ε) Program specificction. Could someone write a program
indistinguishable from this one in respect of all input
and output (except possibly for marginal accuracy) if he
were given only the specification?

Continuation to : NS y 8<
Sheet Nc. : 18.

z∙soι'a nelson RESEARCH LABORATORIES
STAFFORD E. E. CO. LTD.
M4TE2i IATICS DEI ffRT?'03bTT.

Program section sueoifioation. Gould someone writo a
section that could replace the existing one if he were given
only the section's specification?

(b) Oyer'- 11 logical flow diagram, Could someone writo the
swoσifiσεtion of any section if he were given only tho
program specification, the overall logical flow diagram
and tho specification of all the other sections?

Program Section Flow Diaryam. Could someone write the
coding for the sdotion (including punched parameters etc.
if ho were given only the computer flew diagram?

(c) Program P,.o⅛ List and Coding. Could somcqpo prepare the pack
of program cards if he wore given only the program pack list,
the coding of all the programmer's contributions to the pro­
gram, and access to a catalogued library of cards including
all other routines and subroutines used by the programmer?

(d) Paok Assembly Instructions. Could someone prepare the card
trays (including data cords and marker cards for insertions)
pi-on only the program specification relating to punched
input, the pack assembly instructions, the program pack and
tho written data for one application of tho program?

(o) Operating Instructions, Could someone operate tho program
given only tho prepared card trays and tho operating in­
structions?

If those reconstructions arc possible then the collected inform­
ation contains some redundancy. Just as redundancy in the numbers pro­
cessed during a particular operation can be used to detect processing
errors (see 2.42) so this redundancy can be used during program prepar­
ation to detect programming errors.

Continuation to :NS y 80
Sheet No.: 19 ∙

z∙so"j3 NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
4 Tilt . .TICS ΠEP71RΠΠlτT.

4. R. W TO CHECK , A ffiOGRAM.

Programmers often say after finding a mistake by trial on the
computer that they didn't or couldn't check 'that sort of thing.' Below
is described a method of checking not merely that instructions are obeyed
in the right order but that they do what the specification of the program
soys. This hinges on the documentation described in 3.

4.1. Overall logical flow diagram.

All the items of data and result listed in the specification should
occur as inputs to .or outputs from the overall logical flow diagram.

4.2. The Section Spocifioations.

The input to the whole program is the totality of inputs to oach
section that arc not internally provided. So the punched or manual input
of any section must also bo described eicher in tho program specification
as data for tho wholo program, or else in the operating instructions as
card-stored or "operator-stored" intermediate results.

Similarly the punched or visual output of any section must also bo
described in cither tho program specification as results of the whole pro­
gram or else in the operating instructions as card-stored or "operator-
stored" intermediate results. A particular case of this is that any
failure indication of any subroutine or routine used is also a failure
indication of tho whole program, although it may be possible to bo more
informative about its significance as a possible outcome of tho program
than as a possible outcome of one subroutine. (o.g. a division failuro
might only have one possible meaning in a particular context.) It may bo
necessary to add further descriptions to failure indications in order to
distinguish thorn from one another. (Note that indications on the IS
lamps given by subroutines vary according to tho position of the subroutine.)

In the same way, the intermediate results provided as data for
subsequent sections oan be checked against one another. Any pair of
sections that occur adjacently in the overall logical flow diagram should
match domino-wise in their specifications (A section can have more than one
immediate predecessor or successor.) If a section uses stores not used
but preserved by an immediate predecessor thon all ιaossiblc routes con­
necting the relevant sections on the flow diagram must bo considered.

4.3. The Section Logical Flow Diagram.

Check the logical flow diagram of each section against its spec­
ification. It should only uso things that arc part of its data and should
loavo everything that is part of its result.

Chock that conditions are being correctly set for each loop
especially if there is a nest of loops of tho form:

Continuation to : NS y 80
Sheet No. : 20,

ι,so∣∕n NELSON RESEARCH LABORATORIES
STAFFORD F. E. CO. LTD.
MA WATI0S DEE PT∕ ∏ !T,

Th√∙ro will for example be some operations, (such as modifying and replacing
instructions and storing and restarting suns) that must be performed
before each sequence of repetitions of the innermost loop and some that
must be obeyed afterwards. These are cn^- ¾ resFcc^^vc-∣-y an^∙ raus"k
be correctly composed.

4.4. Computer Flow Dia√ygms.

Each section of computer flow diagram must be checked against its
logical flow diagram, especially the correspondence between each branch of the
logical flow flow diagram and the annotations to the corresponding branch of
the computer flow diagram, and also between these notes and tho computer
instructions used. The computer flow diagram should then be checked
against the section specification to see that it docs use, preserve and
leave information in stores as specified. If subroutines or other blocks
arc used then rcfcrenoo to tho specifications for those will be necessary,
including their entry and exit points and any parameters that must be pun­
ched on their cards or provided by the program.

This specification also includes initial and final states of
triggers (for example decimal punching routines require TCB to be off
or they usually punch zeros.) Remember that 0-24 and 1-24 have two
effects, not one, since they also clear TCB and call TCB respectively.

Check that data (including links) arc set for each subroutine and
inner loop from whatever direction it is approached and that the sub­
routine does not use stores whose preservation is assumed.

I

Continuation to : ITS y 0C
Sheet No. : 21 ∙

z,5o.∕23 NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
. ITIΣ3IΔIICS

Check that each of the counting devices used (especially
counting by spilling) is correct end not wrong by, say, one. Work
out its effect for a simple case. Check that it is always exactly right
for all uses made of it (if say it is also used for instruction modifi­
cations) especially during the first and last repetitions.

The smallest practicable units on which such chocking can be per­
formed arc those whose internal organisation is tightly knit to achieve
fastest possible speed or otherwise to exploit most conveniently the
computer's characteristics, c,g. in subroutines, inner loops, reading
and punching routines.

Then check the consistency between the annotations to the com­
puter flow diagram and the actual computer instructions, both thoso
associating symbols with stores and those associating a question with a
discrimination instruction. Finally check that no impossible transfers
are asked for and that the timing rules of multiplication, reading cards
etc. arc not disobeyed.

4.5. The Coding and Program Pack List.

Chock the coding against the statement of stores occupied in the
specification.

Check the coding against tho computer flow diagram in the order
in which the instructions occur on the flow diagram noting especially
that branch instructions and modified instructions correctly specify their
successors every time they are obeyed. Chock all the coded information
including entry-point, and instructions and numbers that are referred to
by the program as well as the instructions that are actually obeyed.

Check the values of parameters for paramotic subroutines noted in
tho flow diagram against the ones coded. If they do not agree then make
sure that the program itself provides them. Chock that subroutines used
in modified forms have tho modifications entered on the coding sheet and
that any resulting changes in the subroutine specification (o.g. in
stores occupied) is correctly recorded.

Chock the program pack list against the coding (including card
numbers) and against the specifications of any programs used to see that
it records any tampering with the cards that might be necessary for each
use. Chuck any parameters required by a control program against tho
track numbers etc. concerned. ,

4.6, The Pack Assembly Instructions and Operating Instructions.

Chuck tho pack assembly instructions against the program specific­
ation and overall logical flow diagram to ensure that there are no cir­
cumstances in which tho given card ordor would be wrong. If intermediate
card storage is used check against the specifications cf the sections
prrlucing and consuming these cards.

Check the operating instructions against the manual input and
visual output stated in the specifications. Check that the overall
logical flow diagram can be telescoped to correspond exactly with the
flow diagram of operating instructions described in 3.15.

Continuation to :NS y 80

Sheet No. :22.

z∙50,'23 NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
P f.∙PC0TIC4 EmPPTLILd?.

4.7. The Program I¾ σk.

Chock the cards of each section against the coding sheets by read­
ing from the cards.

Check everything referred to on the coding sheets including initial
instructions or parameters, subroutines used (identifiable by their punched
catalogue number and position number), punched parameters or modifications
to subroutines, Γ54's and card numbers. Then check the whole pack against
the program pack list.

4.8. The Pack assembled for input to the computer.

Checks on data preparation prior to punching it are usually peculiar
to particular jobs.

Pro-computer cheeking of data punching can be done with on electric
card verifier provided that they are decimally punched. This is an ex­
tremely g,∙.od reason for programming to accept all data in decimal.
Furthermore, oheck-sums can sometimes be checked with a tabulator.

If a programmer is in a position to and does decide against decim­
ally punched input (to simplify programing, or to use or be compatible
with existing programs, or because tho data is genuinely binary - as for
example in some statistical work) he must choose a form chat facilitates
chocking by other means. He may dccido to rely entirely on programmed
checks or to give the user a choice between off-computer and computer
checking.

After assembling oards (and marker cards - sec 3.14) in trays
ready for inputting to the computer, check then against the pack assembly
instructions.

Checking the data pack assembly is important before testing as well
as before actual use, since mistakes may confuse the diagnosis of program
faults.

4.999. Checking must be tho last thing that happens before running the
program cither for testing or useful production. If a mistake is dis­
covered and corrected then the revised program and/or pack must be re­
checked. And so on.

Continuation to :NS y 80
Sheet No.: 23.

z,5o.∕H NELSON research laboratories
STAFFORD E. E. CO. LTD.

,7 THU T.T7CS DKP/JWCNT.

5. WHAT TO DO BIOTR¾ USING THE ∞1TUT⅞R.

5.1. Prerequisites

It is time-wasting to try a program on the computer before
eliminating as many mistakes as possible by systematic checking. This
applies as much after the smallest alteration has been made as it dees to
a new program. A method of checking new programs was described in 4.

It is also time-wasting to attempt unaided program testing unless
you are familiar with all the facilities both engineered and programmed
that make it easier. These are:-

(ε) various manual inputs to the computer on the reader, punch
and control panel; especially the REQUEST STOP and PROGRAM
Disruj keys.

various visual outputs from the computer on the reader,
punch and control panel; especially the IS lamps and the
monitors, including the use f the right hand one for
inspecting TS COUNT and (indirectly) the drum.

(c) the facilities provided by the control program you are using
(if you are using one) for monitoring the progress of the
program, restoring control, restarting, and changing stored
program.

(d) library post mortem programs, especially POST MORTEM (ZP29).

Information on (a) and (b) is contained in The Deuce Control
panel Manual and on (c) and (d) in the individual program reports (they
mostly have the initials ZC and ZP respectively.)

5.2. Operating Instructions for the Prograci Tester.

Program testing is usually more effective if it is systematic.
Just as you can ask retrospectively "How could I have prevented that
mistake from getting as far as the computer", so you can ask "What could
I have noticed or recorded in the behaviour of the computer that would
have put me on the right track sooner". Each time you try a program
on the computer you should have decided what things you are going to
look for and in what order.

In 3.15 the operating instructions to the future user of the
program (possibly yourself) were defined. What appears to be needed now
is your operating instructions to yourself for your program testing session.
This at first sight rather pointless requirement is aimed at making the thin
you do to the computer as automatic as possible by doing as much as pos­
sible of the thinking before and after. The reason for this aim is that
most people do not seem to find computer operation conducive to luoid
thought.

These instructions will be of the four sorts listed in 3.15 but
will not usually be conditional on the card output of the program
(which you can take away and look at if there is any), but on information
observed while it is running. So the things you particularly hope or
fear might happen should be listed together with the action to be taken
if they do not or do. Besides the failure indications, etc. already
specified among the general documents of the program, this list will in­
clude the order and approximate extent of reading, calculating and punch­
ing, and noticablo features on the IS and OPS lamps and the monitors.

Continuation to: NS y £

Sheet No.: 24∙

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
M4THEtATICS DEPARTMENT.

Since there are not likely to lee enough such landmarks to local­
ize a divergence from correct behaviour, 5.32. describes ways in which
landmarks can be temporarily introduced for testing purposes, and the
sorts of information that oan be collected while at the computer.

A general idea of how a program testing session can be used is
given in 6.

5.3. Information Available from the Ccmputer.

The program can be allowed to run normally, or it can be inter­
fered with by previous tampering or manually while on the computer.

5∙31. With normal running,

If a program is provided with some data and tried on the computer
two sorts of information may be obtained, visual and punched.

5.31.1. Visual Information.

The lamps and monitors only have a completely determinate appear­
ance if the computer is stopped (i,e. if the GO lamp is off). This will
happen whenever the computer reaches, a stopped instruction, intended or
otherwise. In particular if it reaches the instruction 8,0-0 X with the
reader uncalled and TS COUNT and the ID clear it is said to have "fallen
out". (This instruction should not occur in a program.) When the com­
puter is going, the general appearance of the lamps and monitors can
convey useful information to an experienced operator. In particular the
IS lamps should be watched while inputting the instructions and data of a
program under test, since most input routines produce a characteristic
pattern on them during correct running that will immediately respond to a
fault in pack assembly.

A program proceeds so rapidly if allowed to that it is usually
difficult to be conclusive about where it first went wrong, so 5-32.1
and 5.33.1 describe ways in which landmarks can be introduced by previous­
ly tampering with the cards or by interfering manually during operation.

However, observing and recording visual information uses a great
deal of computer time and the selection from it made by an operator work­
ing under pressure rarely turns out to be the most useful, so 5.32.2 and
5.33.2 describe how fairly large amounts of it can be punched and exam­
ined at leisure.

There is nevertheless some information that can only be recorded
by an operator writing it down, o.g. that cards were left unread in the
reader or that they were read at 100 per minute rather than 200 per minute,

5.31.2. lunched Information

The normal card output will be enough to show whether the program
has operated correctly with the data provided. If wrong output or no
output is produced it may not be sufficient by itself to trace the fault
(see 7.1 for ways in which the incorrectness or absence of results can
be used), so 5-32.2 and 5.33.2 describe ways of punching more evidence,

5.32, By Tamp or ⅛¾ with the Cards.

Previous remarks suggest ways in which a program can be slightly
modified to provide more information, both visual and punched, about its
behaviour.

Continuation to : ∏g y 80

Sheet No.: 25.

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
?: ...THELIATICS DEPART; ENT.

5.32,1. Vi s us1 Infonaat ion.

Some instructions csn temporarily bo made stopped by altering the
program cards. These should be chosen so that as each appears on the IS
lamps, some new information about what parts of the program are working is
obtained. Such places are, for example, (i) just after reading program
or data from the reader or from the drum (ii) just before or after enter­
ing a subroutine or a now section of program such as a repeated loop.
The computer stops every time it reaches a stopped instruction until it is
given a manual or automatic oneshot. This fact has two consequences.

(a) a temporary stopper may be a nuisance if there ard many repet­
itions of it before the program reaches a point to be investigated by the
test.

(b) a temporary stopper will not stop the computer just before or in
the middle of a reading or punching routine unless special precautions are
taken. It will merely affect the result of the routine by taking up a
oneshot intended for some other stopped instruction. Ways of examining
such routines in action are described in 5.33.

Thus st Read
30-1 X

1 °
o

will call in a program 2mc out of phase. Such effects may be more drastic
and obvious or may be partly masked by later parts of the program being
wrong in the same way,

(c) a temporary stopper can also affect the subsequent outcome if
it prevents synchronisation between multiplication (or division) and
instructions obeyed while it is still going on.

5-32.2. lunched Information.

Some sort of "progress report" can be programmed that periodically
indicates on the 013 lights or by punching a card how for the program has
got, with perhaps some other useful information. This bit or program can
be short-circuited once it has served its purpose. (However, after doing
this further checking and testing must be done.)

5.33. By Manual Interference.

The usefulness of a trial run can sometimes be further improved by
manually interfering with it. This should be planned in advance to produce
the visual and punched diagnostic evidence that will detect and locate a
fault.

5-33.1. Visual .Information.

The "landmarks'11 inserted previously can be supplemented by manually
slowing down the progress of the program so that significant features
on IS lamps and monitors can bo observed. There are several ways of
doing this.

Continuation to : NS y 80
Sheet No.: 26.

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
’ iTKl I ..TICS DEPART!TPT.

5.33.11. Roquost Stσp.

Request stops differ from temporary stoppers as follows:-

(a) Any selection of specific instructions can be made tempor­
ary stoppers and the computer will stop before every attempt
to obey one of them until it gets an automatic or manual
oneshot. A request stop on the other hand can not be made
on a specific instruction but only on a pattern comprising one
or more of NIS, Source and Destination, and any instruction
conforming to the pattern will stop the computer. Further­
more, only one pattern can be specified at a time, though
this might cause a stop at many instructions (possibly un­
expected ones.)

(b) A request stop will freeze the computer during a reading or
punching routine with any card movement continuing indefinitely
without affecting it (consequently the subsequent outcome
after passing the request stop will be affected.)

»7- O ert ∙δ- o
(c) A request stop on 0-24, 1-24, 2-24, 10-24 or 12-24Jcan affoct

the subsequent outcome, θΛ^d- *λλ4 ∣^~
,>C¼j ~βiX⅛<ΛCL√ ΛΛ-β ∙

(d) A request stop can only be introduced or removed while oper­
ating the computer and so can for example be removed after a
few repetitions of a suspect loop.

(e) A request stop can bo made on an instruction whose address
is not known, for example to detect unintentional transfers to
a particular tank. Concomitantly it may confuse the operator
by stopping on unsuspected instructions that are like the
instruction that is intended, unless care is used in previously
selecting the instruction.

5.33.12. Have the computer at STOP, possibly with CONTINUOUS SINGLE SHOTS.
This produces a static or slow motion picture of the lamps, etc. However,
remember that it does not distinguish between stop instructions and go
instructions.

5.. 33.13.Have the computer at AUGMENTED STOP with CONTINUOUS SINGLE SHOTS
(or PROGRAM DISPLAY which is quicker and in every way preferable.) This
has the same effect as the above but stops on stop instructions.

5.33.. 14. Prevent the normal flow of cards through tho reader with the
reader STOP key or the SINGLE READ key or by splitting the input pack.
This may be a strategic moment to observe the IS lamps or monitors.
For example the reading of a card can be simulated by setting on the
ID lamps the contents of consecutive rows and giving, manual oneshots.

5,33.15.Prevent the normal flow of cards through the punch with tho punch
STOP key. For example the punching of a card can be simulated by giving
manual oneshots and observing (and clearing) the successive contents of
the OPS lamps.

Continuation to: NS y 80
Sheet No. :27»

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
- MYΠΠ3iPTICS Π31YJffiθJT.

5.33.2. Punched Information.

The following information can he punched by interfering manually:-

(a) the sequence of instructions actually obeyed (punched by
PRCGRzAM DISPLAY, an engineered device.)

(b) the actual state of the computer at any one time (punched by
POST J'i∏RTK⅛, a programmed device.)

5.34.

It must be remembered that altering the operating circumstances
to produce useful evidence may not produce evidence about normal operation.
Per example, instructions following multiplication or division might have
different outcomes when obeyed stopped, and PROGRAM DISPLAY might supply a
TIL signal when its absence is expected in normal running,

5.4. Test Data.

In deciding what data to use at each test run the object is twofold;-

(a) to subject the program to slightly more severe testing than it
is known to stand up to, so that one new feature is being
tested. If possible use data such that hand cheeking of the
calculations is feasible if it becomes necessary.

(b) to cover in as short a time as possible all the limiting oases
of the data, testing each parameter to the limits prescribed
for it by the program specification.

For example, the first run should be done with as few and as
simple numbers as will check that the overall logic is being followed.
Thereafter, if the program works with some data and not with other, cases
that will isolate characteristics that might be relevant should be con­
structed.

5.999.

Checking must be the last thing that happens before testing tho
program. If any alterations are made during preparations for testing, then
the revised program and/or pack must be rechecked. And so on.

Continuation to ; NS y 80
Sheet No.: 28,

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
M .TEH u1TIOS DE.ART! ENT.

6. m TO DO 7⅛iILB OΓSRΛTING THE coι.gyτj^.

Normally a trial run can be conducted according to operating
instructions previously prepared. However, these must allow for a
completely unforeseen eventuality.

6.1. Emergency Drill.

If something happens that has not been specifically planned for,
restart the program, program display from the last correctly occurring
landmark up to the point when something has gone noticeably wrong and
then post mortem. If there is no time to restart, program display a
few instructions if the computer is still going and post mortem in any case.

A complete post mortem may take up to eight minutes, but some of
this time can be saved if it is known that only certain areas of the drum
store are likely to contain useful evidence. The mercury store should
always be punched complete in those circumstances.

6.2. Further detail in dealing with unforeseen oiroumstanoes.

There follows more detail of a possible procedure which can be
ignored or varied in the light of experience.

Watch the IS lights while the program is being read in. They
may show that the input is not happening properly. If so, by splitting
the pack find where it is going wrong, (see 5.31.1 for further remarks
on this). When the machine unexpectedly appears inactive, i,e. when
neither the intended thing nor anything in particular is happening, then
either,

(a) the GO lamp is on and it is going, or

(b) the GO lamp is off and it has reached a stopped instruction
indicated on the IS lights.

In case (a) the machine may be in a fairly small loop.

Examination of the TS's and DL's with the monitor may suggest:

(i) that nothing is apparently changing

(ii) that something is changing with periodicity

(iii) that something is changing progressively, e.g. a
counting number is counting a very large number of
iterations.

In case (iii) note where the progressive change is. In any case use
FROGR∙.M DISPLAY and while this is punching continue to watch the monitors
and also the IS lamps again for any observable periodicity. If the
change is completely periodic program display need be run for one period
only to obtain full information. However, whether this is so is not
always obvious from watching the control panel and when the punched
evidence is examined larger periodicity than the smallest one might be
discovered.

After stopping program display, use POST 1KT1TSM to recover as
much of the machine as might be relevant.

Continuation to: ITS y 80
Sheet No.: 29,

S.R. I4A.

NELSON RESEARCH LABORATORIES
STAFFORD E. E. CO. LTD.

y∙TIΓILJICS DEPΛRT1I21T.

In caso (b) see if the reader or punch has been called. If both
have, there is probably something wrong (e.g. the reader should have been
cleared.) If one has and is not ready, then the stopper is probably
the one that is waiting for the first row of a card. In the case of the
reader, run in the cards that the computer is expecting. If you do not
know what it is expecting there is probably something wrong. However, it
may be that the reader has been called, or merely not cleared, by mistake.
In the case that the punch has been called either there are cards in the
punch hopper or it has run out of cards. In either case run in cards.
If the stopper is not explicable in this way, then it is

(i) a failure or other indication in a program or subroutine
that you are using. In this case do as you have previously
planned;

(ii) a temporary stopper that you have supplied in which case you
will already have decided what action you intend to take on
reaching it;

(iii) a stopper you did not expect (you may recognise or remember
that it is an instruction you did not intend to be a stopper
in which case a oneshot will be sufficient, or if it is very
frequently obeyed it might be necessary to change it on the
cards and read the program in again.);

(iv) an instruction you did not expect, e.g. you might be quite
certain that your program do⅛s not contain an instruction with
NIS 7 say. Look at TS COUNT with the right hand monitor in
order to see the Pl and Pl 5 digits (which arc not shown on the
IS IS lamps.) You might now decide that a word that is not an
instruction is mistakenly in TS COUNT. Record as much of
TS COUNT as is possible. You can now either

(a) use POST NΩ~.TEM and discover at leisure where the
spurious instruction was, or

(b) try to identify it in the monitor and then by
stopping the machine and one-shotting try to
re-enter the program albeit at random on the
chance of getting more information;

(v) probably the commonest unexpected thing to happen is that
the IS lamps (including the GO lamp) are blank. The computer
is said to have fallen out. Proceed as in (iv).

6.3. ⅛king. the 3e_st of a Bad Job.

after finding a symptom at the computer it is sometimes possible
to force the program to proceed, though incorrectly, and collect more
information about the first detected, or other, mistakes. It may be
useful to alter the course of the program by manual interference.
For example,

(a) a branch instruction can be forced the wrong way with the
DISCED! key;

(b) the contents of a tank can bo altered with the EXTERNAL TREE
key and the CONT TT key;

(c) the NIS, Source or Destination of an instruction can bo altered
as it is being obeyed with the EXTERNAL TREE key and the
SINGLE SHOT key.

The computer must be stopped to do any of these.

Continuation to: NS y 80

Sheet No.: 30.

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
: IIIL2DTIGS ∏. PfliTI UITT.

6.4. Inconsistent Behaviour.

Apparently inconsistent behaviour can have several causes, depending
partly on how loosely you use the word. Inconsistent behaviour can only
be confidently deduced from the evidence if identical operations that fulfil
the rules for using the computer started from states of the computer that
were identical in all relevant respects and led to different results.

Apparent inconsistencies may be caused by:

(a) different initial states, e.g. any of the following might
be relevant; (i) the contents of the drum were different.
(This can usually be avoided by using CLEAR DRUM ZP 13/1
after the initial card of a program); (ii) the drum head
positions were different (CLEAR DRUM ZP 13/1 also leaves
these in a constant state); (iii) the punch was in different
state (RUN IN on one occasion and not on the other). For
complete information about the correct initial state see 2.11.

(b) using forbidden sequences of instructions or indeterminate
operating instructions. These are (i) sequences depending
on Hollerith times outside the prescribed limits (especially the
time after reading program cards during which it is not pos­
sible to road the ID lamps); (ii) sequences depending on
magnetic drum times (in relation to Hollerith times) that are
outside the prescribed limits; (iii) unlisted instructions .
with destination 24. (fv) (LuGAa^oIiX d— Q5 l7er√",^ rtfαJ^ %¼fiκs

<SHλ‰ vOOvcf (*r

(c) different operations being compared, e.g. (i) two runs during one of
which temporary stoppers, or controlled passage of cards or pro­
gram display was used may produce different results if the time
taken by cards to go through the reader or punch, or by the multi­
plier or divider is relevant; (ii) the use of j⅛CGRAM DISPLAY
may interfere with a program using TIL; (iii) the INITIAL
INPUT and RUN IN keys are only interchangeable in certain
contexts.

Continuation to : NS y 80

Sheet No.: j1 ∙

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.

^7. WAT TO DO ∫J1TER USING- TICS ∞TCTTBR.

7.1. The use of incorrect answers.

The cards punched by the program being tested supply information of
two kinds:

(a) the number and general layout of the cards, e.g. a systematic
displacement of the rows of cards can be caused (i) by having
extra stoppers in the punching routine that are being taken up
by oneshots from the punch, (ii) by instructions which should be
stoppers not being stoppers. These two mistakes tend to cause
a spreading out of rows and a telescoping of rows respectively.

(b) the actual numbers. Most that could be said under this head­
ing must relate to particular calculations, but some general
observations are possible. Frequently the fact that numbers
which should be the same are in fact different or the reverse,
is sufficient to point to a cause. For instance, a string of
numbers that should be equal, having been produced by repetit­
ions cf a loop on fixed data, might in fact have the first one
different from the others. This suggests that the conditions
for the loop to work are only being set correctly after the
first time round it or are being destroyed after the first time
round it.

7.2. The use of PROGRAM EISHu.Y results.

PROGRAM DISPLAY cards can be checked against the flow diagram of
either your program or the subroutines, etc. that you use.

In the case that they display the machine falling out or reaching
an improbable instruction, it is best to look right away at the last card
punched and trace back to the incorrect instruction.

In the case that an unknown section of program has been punched it
can best be identified by finding distinctive instructions (e.g. a wait
number of 3l) on the coding sheets. Note that

(a) the NIS of each instruction specifies the DL in which its
successor is stored;

(b) there may be more than one set of instructions stored in a
particular delay line at different times;

(c) the instructions in question might be from a subroutine and
not on your coding sheets.

A large number of cards can be rapidly examined if a periodicity of
say 25 instructions is present or if an instruction is repeatedly obeyed with
modified wait numbers, or by merely looking for successive branch instructions
and checking that the right direction is taken each time. An error can thus
be rapidly located to a few dozen instructions.

An incorrect sequence of instructions may bo explained by disagree­
ment between flow diagram and coding or between coding and cards or both.
If it is not, the first incorrect instruction that way obeyed has somehow
wrongly occupied an address. Establish whether or not the sequence of
instructions had been obeyed correctly before. Either the PROGRAM DISPLAY
cards or other evidence about how much of the program must have previously
been completed may do this. If it has, then the incorrect instruction
has been placed there since the last time. The program display cards may
actually show this happening.

Continuation to : NS y 80

Sheet No.: p2.

S.Λ. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
MiTERYLTICS EOS AET1ENT.

Alternatively discover what the incorrect instruction is. It
may he an instruction or a number which should he somewhere else. If so,
see whether it is in its right place as well and if not what is. POST
MORTEM results will he necessary to do this.

7.3. The use_ of POST lpRTE∣∙t results.

POST MORTEM might have been used with a specific purpose, e.g.
discovering whether certain data were stored in the correct places, whether
certain numbers checked against each other or comparing the entire store
at the end of some section with the written specification. When something
unexpected has been found further use can sometimes be made of them to
explain it.

In this case or if they have been produced without a specific
intention the following things can be examined:

(a) Counting numbers or programmed triggers.

(b) Modified instructions.

(c) Addresses to which instructions are sent during the program,
especially l^θ, 1 , etc. if subroutines are used (though

some subroutines use non-standard link positions.)

(d) Addresses to which numbers are moved consecutively during the
program, e.g. a DL which holds successive tracks of the drum,
or a TS which holds successive words of a DL during the program.

(e) Sums cumulated during calculations.

(f) Addresses to which newly generated numbers are sent.

Some of these things may indicate how far the program has progressed.
All of them should be carefully examined since apparent contradictions
between them may shed light on the error.

Note that programs of subroutines that you do not write might
leave unfamiliar stuff around.

7Λ.

After finding a mistake as a result of evidence collected from the
computer, you should make sure just what the mistake accounts for. It
may be that the evidence already available will lead to further mistakes
being found.

Continuation to: NS y 80

Sheet No.: 33∙

S.R. HA.

NELSON RESEARCH LABORATORIES
STAFFORD E. E. CO. LTD.
MATHEMATICS DEPA> T1 BUT.

8. ERRORS OTHER THAN 3¾0GR J¾mG WΩS5.

Running a program may reveal programming mistakes, i.c. incon­
sistencies, ambiguities or omissions in the documents listed in 3.
(Any programming mistake could have been discovered without resource to
the computer.) It may also reveal non-programming mistakes of two sorts;-
unexpected or unplanned features that call for modifications in the program,
and mistakes in preparing for, operating and subsequently processing the
results of, the current run.

During any investigation of a program these two additional
possibilities should always be borne in mind, in order to avoid a
fruitless search for a programming mistake to account for what is inherent
in the design of program or peculiar to one run.

8.1. Pre-Progra mmin g Errors.

There are three sorts of pre-programming mistakes that cannot
be revealed by checking a program off the computer:-

(a) a discrepancy between the specification and what was intended.
This usually arises as a misunderstanding between the programmer
and the commissioning person or people and considerable effort
should be put into avoiding t is by insisting on precise and
comprehensible exchanges of information at an early stage.
This cen be very irritating to a commissioner. It is a phase
of programming when redundancy should be piled on, especially
by quoting simple and extreme examples. Many commissioners
will agree (perhaps with some irritation) to four synonymous
formulations of their problem and then demur at a fifth. In
particular an unsuspected absurdity is often revealed if they
are made to visualise what numbers they will actually have to
provide or what their results will look like in print.

(b) an unsatisfactory implication of the specification that is only
revealed by trying the program. For example, an iterative
procedure may not converge rapidly enough or the calculation
may require greater accuracy or the necessary operating may
prove impracticably difficult or delaying. This usually
arises in cases where the numerical, statistical or arith­
metical analysis to investigate the required accuracy or
amount of computation or the operating implications was
too difficult or was not undertaken because not considered.

(c) a mistake (possibly an ambiguity or omission) in the inform­
ation about a part of the program previously written (by the
programmer or someone else.)

8.2. Rost-prograjareing Errors.

There are three kinds of post-programming errors that may occur
during a particular run. However, they may not be immediatly distinguish­
able by their symptoms from other sorts of mistakes. Furthermore, though
they can be corrected by re-running the program they may suggest program
modifications and so fall into type (b) of 8.1.

Continusticn to : - rS y 8(

Sheet No.: 34»

S.R. I4A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
IATH1I1ΔTICS DΞrAEΓI 1 ITT.

(a) A mistake in preparing the data according to the program
specification or in assembling the pack according to the pack
assembly instructions, i.e. cards in the wrong order or with
wrongly punched parameters. If the program has a specified
result for any data, correct or incorrect, then the latter will
be immediately identified. The usefulness of this is somewhat
reduced by the fact that the second sort of mistake or any other
input without a specified outcome may produce a misleading
outcome.

(b) An operating mistake. The opportunities a programmer has for
encouraging these have already been mentioned.

(c) A mistake in the subsequent processes. After the computer
has produced the right cards, sorting, printing or copying
errors may occur. The actual cards produced by the computer
with sufficient identification for their original order to
be reconstructed should bo available while investigating a
suspected fault.

Continuation to : MS y 8C
Sheet No.: 35∙

S.R. 14A.

NELSON RESEARCH LABORATORIES

STAFFORD E. E. CO. LTD.
: ATM3f' A.TICS DKPAKΓ.'. di iT.

