
CONFERENCE ON AUTOMATIC PROGRAMMING OP DIGITAL COMPUTERS

MATHEMATICS DEPARTMENT

BRIGHTON TECHNICAL COLLEGE

April 1, 2, 3, 1959

AUTOMATIC PROGRAMMING ON DEUCE

by

C. ROBINSON, M.Sc.

(The English Electrio Co Ltd.)





Automatic Programming on DEUCE.

*• C. Robinson, M.Sc.

1. INTRODUCTION.

Despite the organisation of vast libraries of subroutines and programmes, 
and the facilities for testing new programmes, a real need has grown up for 
flexible and powerful schemes, capable of being used to construct new DEUCE 
programmes in a fraction of the noimal time. During the last four years a 
variety of such schemes has grown up for DEUCE, and the present paper and a 
companion paper by Mr. S.J.M. Denison,.'reviews some of these, and fits them into 
perspective. The schemes STAC, GIP (General Interpretive Programme), TIP 
(Tabular Interpretive Programme), Alphacode, GEORGE, SODA, Easicode, STEVE, and 
the.Alphacode Tabulator have been produced at intervals at various DEUCE 
establishments, to all of which credit should be given for the introduction of 
new ideas and exploitation of older ones. A study of the way in which most 
of these schemes develop ideas in the.others, and contribute new techniques is 
in itself an interesting geneological exercise.

The present paper is concerned with some automatic aids to DEUCE programming, 
and some interpretive schemes. The companion paper discusses other interpretive 
schemes and translation schemes.

2. NORMAL DEUCE PROGRAMMING.

It would perhaps be as well to prefix any remarks on automatic programming 
for DEUCE with a brief reminder of the machine's order-code and storage.
The high speed memory consists of 402 words of mercury delay line store, and 
•this is backed with a magnetic drum with 8192 words capacity. The drum store 
consists of 256 tracks of J2 words each, and transfer to and from the high 
speed store is one whole track at a time, the length of most of the delay lines 
being such that they also store 52 words. During such transfers to and from the 
high speed store, the rest of the facilities of the machine are available for 
parallel operations. The basic instruction word specifies a source and 
destination and causes a number to be transferred from the Source Delay Line 
to the Destination delay line. Apart from Sources and Destinations which 
represent real machine addresses, other pseudo-sources and destinations are 
used for multiplication, division, the accumulators, magnetic transfers etc.
The instruction word is completed by a Wait Number which specifies the minor 
cycle(s) in which the transfer from Source to Destination is to take place, 
the Characteristic which effectively specifies the duration of the transfer 
which may be for more than one minor cycle, the Next Instruction Source which 
specifies the delay line from which the next instruction is to be taken, and 
the Timing number which specifies the minor cycle from which the next instruction 
is to come. Thus whereas the planning of a programme is complete when one has 
written down the Sources, Destinations and durations of transfer of all the 
instructions which the machine is to obey,, in the sequence in which it is to obey 
them, there remains the operation of (i) allocating storage to these orders, 
preferably so as to minimise time, (ii) coding, that is completing each 
instruction by the addition of Next Instruction Source, Wait and Timing Numbers 
and (iii) punching out the instructions on the input medium. Though the first 
two of these operations do allow scope for ingenuity and skill, all three can be 
regarded as fairly routine operations which need not worry the programmer. Apart 
from the 52 word delay lines, there are shorter lines:- 4 single word, each with 
associated pseudo addresses for particular arithmetic or logical operations,
5 double word, one of which is a multiplier, divider and double length accumulator, 
and 2 quadruple length lines. This combination of delay line lengths allows great 
flexibility in programming, and speed of operation, but at the same time requires 
care in ensuring that transfers between these delay lines and the long delay lines 
are in the appropriate minor cycles. Further flexibility and speed is achieved by 
allowing operations which do not interfere with each other to go on in parallel. 
Mention has already been made of magnetic transfers, and in addition the reader, 
punch, multiplier and magnetic tape equipment may all be working simultaneously 
with, say, some ’housekeeping’ operation.

5. AUTOMATIC PROGRAMMING.

It is, at this stage, worth while considering what are the operations which 
a programmer, faced with a problem and a computer, must undertake before he 
arrives at a solution. Figure 1 is a pictorial representation of the steps involved 
between a problem and its solution. Of course the intermediate steps do not all 
call for the same skill or effect, or consume the same time. Most people would 
agree that steps 2, 5» 10 and 11 are more difficult and more time consuming than



Sheet No, 2,
4

the inverse steps. Moreover these same steps are virtually independent of the 
machine on which the problem is to be solved, at least if the machine’s own order 
code is being used, and this is also true of step 9. Steps 4 and 7 have a 
parallel on any machine whatever its order code, and steps 5,6 and 8 largely arise 
because of the facility of optimum coding on DEUCE. All programmers will, of 
course, be familiar with setbacks in testing and debugging their programmes, and 
these operations are shown on Figure 1 by the return loops at the left hand side. 
When working in a machine’s natural order code however, it is illuminating to note 
how much debugging is really independent of the machine and is due to solving the 
wrong problem, or due to logical errors.

Having now considered figure 1, we may define as automatic programming any 
machine aid which allows us to short circuit any of the steps in this diagram. 
Figures 2, 5 and 4 show the effect of some of the DEUCE automatic programming 
schemes in removing the inner steps of figure 1, and, more important, removing the 
frustrating feedback loops at the same time. The various schemes will now be 
discussed in a little detail. It will be convenient to discuss first the schemes 
which preserve for the user the basic DEUCE order code, and then to mention those 
schemes in which the programmer works in an order code having little or no 
resemblance to DEUCE.

4. STAC.

One of the earlier programming aids was a scheme (from R.A.E. Farnborough) 
in which, the flow diagram having been prepared, and the storage allocated, DEUCE 
itself was made to allocate Wait and Timing numbers and so allow a by-pass from 
steps 5 to step 9 on figure I. More recently this has been superseded by STAC - 
(Storage Allocation and Coding) which effectively mechanises that steps between 
4 and 9. The preparation of a programme here ends witn a flow diagram specifying 
merely the source, destination and length of transfer. The STAC programme will 
then take these instructions, and given the storagg place available will make a 
satisfactory job of allocating the storage and optimum coding the programme. In 
doing so it will insert any subroutines called for, and plant and obey their links. 
If the inner loops of programmes are so marked, it will give them priority in the 
coding, and as an additional aid to the programmer it will accept symbolic addresses 
for any stores and allocate suitable minor cycles in delay lines for them. Not 
all the instructions need be specified in the flow diagram in DEUCE order code for 
STAC can accept a few so called ’super instructions’ which it then breaks down
into the correct sequence of machine instructions. Too output of STAC is a 

fully coded programme pack, a full decimal copy of the flow diagram, a list of 
the real addresses allocated to the symbolic addresses, and a statement of which 
storage space remains unused in case the programme should require further mod
ification. The scheme is of greatest use to the non-professional programmer who 
is not as a rule impressed by efforts to cut off milliseconds from a programme, if 
they result in the completed programme being delayedl

5. INTERPRETIVE SCHEMES,

The General Interpretive Programme, Tabular Interpretive Programme, and 
Alphacode are three widely used systems for DEUCE, none of which involve the 
programmer in learning orthodox DEUCE programming. The programming for those 
schemes is so different (and so easy to loam) that it is constructive to look 
upon them as three alternative machines, and look at the ’machine’ specifications 
to see whether they are suitable for the job in mind. Appendix 1 lists the 
qualities of these three ’machines’. A few points call for some comment.

The General Interpretive Programme, is so general that it can be adapted 
to any kind of work, but it is particularly well suited to performing parallel 
calculations on data in bulk. For the interpretation of one G.I.P. instruction 
one may then get thousands of arithmetic operations performed, and the interpretive 
time ceases to be of importance. It is thus particularly well suited to matrix 
operations, and the bulk of the functions available in the library are for linear 
algebra. A feature of this scheme has been the number of problems which have 
been presented to DEUCE though G.I.P. as linear algebra problems, though not 
appearing so at first sight. This is perhaps not so surprising when one considers 
how the orderly methods of matrix operations are so similar to the orderly methods 
one must use to programme successfully for a computor. The Tabular Interpretive 
Programme, as will be described later, is particularly well suited to any 
operation which could be performed with a desk machine and a sheet of paper 
ruled into rows and columns, and where one noimally performs like operations on 
all the numbers in a column and writes the answers in a new column. It is there
fore rather like G.I.P. restricted to vector operations. Alphacode, caters for 
the extreme case where the bulk of the operations in a programme are on one



Sheet Ko, 3,

variable at a time, that is problems in which parallel calculations are not 
required on a number of variables. In this way th,e three schemes are mutually 
complementary in that they each show up to best advantage on different types 
of problem.

Another point of interest are the unique feature of G.I.P. in that it 
has a variable order code in the form of a library of functions which can be 
used with it. In all three schemes the instruction store is quite separate from 
the data store, which does not however prohibit instruction modification, The 
number of instruction^ available with each of these schemes appears small at first 
sight, but they represent sizable programmes bearing in mind that the individual 
orders are so comprehensive,

6, TABULAR INTERPRETIVE PROGRAMME (T.I.P.)

This programme devised at Bristol Aero Engines is the most remarkable example 
of simplicity in programming. The authors, faced with the problem of arousing 
computer consciousness in a number of engineers solved it in a novel way. DEUCE 
was presented to the potential users as something with which they were already 
quite familiar; namely a desk machine operator with a fast machine and a huge sheet 
of paper ruled into rows and columns. Instructions to DEUCE are then in a form 
exactly analogous to those to the human operator. We may for instance be 
accustomed to telling an operator to write successive integers in the first column, 
to square these numbers and write them in the second column and then subtract the 
numbers in the first column from those in the second. The tabular interpretive 
programme will accept these instructions in an even more concise form than they 
have been written above. Each instruction to T.I.P. comprises four numbers a, b, c 
and r. The number r tells the machine which of 31 operations it has to obey, and 
the numbers a, b and c detail the columns concerned. Thus

a b c r

10 0 4

112 0

2 13 5

3 0 0 5
is the complete programme for perfoiming the above operation. The first instruction 
has r = 4 which means "read data into the column designated by a, in this case 
column 1". The second instruction has r = 0 which is interpreted as "multiply the 
numbers in column a (l in this case) by the corresponding numbers in column b 
(.;.lso 1 in this case) and write the results in column c. (i.e. column 2)" The 
reader will deduce from the next instruction that r = 3 means "subtract the 
numbers- in column b from the corresponding numbers in column a and writo the 
results in column c". Similarly r=5 is interpreted as "print out results from 
column a."

The user has therefore at his dispee al a "human, operator equipped with a 
sheet of paper ruled into 128 columns and 30 rows and with the facility of rubbing 
out any columns no longer required and writing new results there," In the above 
programme for instance the last two instructions could have been

a b c r

2 12 3

2 0 0 5



Sheet mo. 4. „

The order code is particularly well fitted to scientific and engineering 
calculations. Apart from the elementary arithmetic operations and "read" and 
"print", Values of r have been allocated to logarithms and exponentials, 
trigonometrical and inverse trigonometrical functions, square roots, modulus, 
and some series. The instruction r = 15 causes column specified in c to 
be filled with the progressive sum of the elements in column a. Other values 
of r are used for shifting a column of figures up or down by one row, this 
facility being of use in finite difference operations. Functions for 
interpolation among the elements of a column and for three dimensional linear 
interpolation in data read to the machine by a special 'read* codeword are 
also available.

Of course, in practise, it is frequently required to operate on a column 
not,with the contents of another column but with a constant. For this purpose,
128 constant stores are available, 52 with built-in constants (which may however 
be over-ridden) and the remainder at the programmer's discretion. These stores 
are referred to as N 0, N 1 etc. to N 127. Thus, the codeword

a b or

1 N4 2 5

causes the constant N4 which happens to be to be subtracted from each of the 
numbers in column and the corresponding results written in column 2.
Similarly

a b c r

N4 , 1 2 5

causes each of the numbers in column 1 to be subtracted from
The Codeword

a b c r

Na b c 15

causes constant number a to be transferred to row b of column c and

a b c r

a b Nc 15

causes the number in row b column a to be transferred to the cth constant store.

Two concepts which are strange to the newcomer to programming are those 
of counting the number of times round a loop and of modifying instructions. In 
these respects, simplicity is the essence of the T.I.P. facilities. Any value 
a, b or c which has an asterisk against it is automatically increased by one 
every time it is obeyed. The instruction

a b c r

Ob c 16 or

0 Nb c 16

is interpreted as "jump to instruction number c until the instructions from c 
onwards have been obeyed b (or Nb) times. In these instructions b and c do not 
refer to column numbers. If b is specified the assumption is that the programmer 
knows precisely how many times he wishes to go round the loop, (which probably 
contains some asterisked instructions); if Nb is used this constant store may well 
contain a number (the number of times round the loop) which has itself been 
computed by the programme. For example, the three instructions

Instruction number ah c r

c 1 100 100 2

c + 1 0 59 c 16

c + 2 0 0 0 18

cause the first 100 columns to be added together. The instruction r = 18



•which may only follow an t s 16 instruction causes all the asterisked instructions 
in the loop ending with previous instruction to be reset to their initial value. Up 
to second order loops are permissible. There is one further instruction of this type 
for use with iterative loops:

a b c r

a Nb c 17

means jump to instruction c repeatedly until such time as the corresponding numbers 
in columns a and a * 1 are all within the percentage tolerance specified in the bth 
constant store, and then proceed normally.

A persistent annoyance to a programmer is to be held up by a failure 
instruction on a machine due to trying to divide by zero, or trying to find the 
square root of a negative number or other error due to the data or the logic. Such 
errors can be time-consuming on the machine, particularly when, as is the case with 
T.I.P. the programmer does not do his own testing, (indeed the illusion of the machine 
as a piece of paper iB maintained to the point that the programmer need never have 
heard of a punched card - the usual DEUCE input/output medium). The present version 
of T.I.P. deals with such contingencies in two ways. If a tolerance only just fails - 
for instance trying to find the inverse cosine of a number greater than unity but less 
than 1 + 2 - 25, T.I.P, gives the programmer the benefit of the doubt, and assumes that 
the data was badly rounded off. If, on the other hand the data is quite impossible, 
the computer does not stop and involve a post-mortem and reference back to the 
programmer: it merely inserts a "dash1 in the corresponding result row. Any further 
operation on a ‘dash’ results in a 'dash' and so the final results may well be quite 
satisfactory apart from one dash in a particular row which the programmer may easily be 
able to explain.

The ’dash’ technique has also been exploited to deal with discriminations.
The operation r = 25 discriminates on the column of numbers specified by b , and 
where they are positive the corresponding numbers of column a are transferred to 
column c, and a ’dash' is placed in column c + 1; otherwise a 'dash* is placed in 
column c and the number is transferred to column c + 1. Columns o and c + 1 can then 
be operated upon independently by the remaining programme. Similarly columns can be 
merged by an r = 26 instruction.

To avoid any scaling worries, and yet to preserve the speed of fixed point 
working, all operations are carried out in block floating arithmetic, that is all the 
numbers in one column are stored to the same exponent, with the largest element filling 
the word and the exponent stored separately. Constants are stored as floating numbers.
The number of elements in a column (usually a constant throughout a programme, but varying 
if finite difference operations or interpolation ’graphical' data are performed) is 
also stored with each column, as is the sum of all elements of the column. The latter 
is tested every time reference is made to the column. Up to-511 instructions can be 
stored in the machine at one time; in general this is more than enough, but more can 
be read in if necessary to overwrite part of the programme.

Generous facilities for programme testing are available, and the setting of 
specified keys on the machine will cause the machine to stop on a particular instruction, 
change it for another, or punch some (usually only ihe first) elements from all or 
specified columns. The latter limited punch out facility is of great use for the 
more involved errors.

The organisation of the programme is fairly obvious. The 128 'columns’ are in 
fact 128 tracks on the drum, the 50 'rows' are 50 of the 52 minor cycles per track, 
the remaining two being used for the no. of rows, the number of binary places and 
the sum check. The high speed store, is used to contain as many of the subroutines 
for the various r functions as can be accommodated, and enough instructions to bring 
down any other selected r function. It also holds, of course the columns currently being 
operated upon, and the routines for disentangling the a, b, c, r instructions and fetching 
and storing columns.

The scheme thus gives (in common with Alphacode) the opportunity of using DEUCE 
without having heard about punched cards, delay lines, minor cycles or magnetic drums, 
and one can begin to programme for T.I.P. on the day one first hears of it.

7. THE GENERAL INTERPRETIVE PROGRAMME.

In some respects, the Tabular Interpretive Programme may be regarded as a



Sheet No, 6, *
rather special case of the General Interpretive Programme, which was developed 
at the National Physical Laboratory four years ago, and which has proved invaluable 
at most DEUCE installations. The form of the instruction word - a, b, c, r for 
T.I.P. was taken from G.I.P. which does not however have a limited range of functions 
r. Self contained programmes, (which may incidentally be used independent of G.I.P.) 

which satisfy a few simple rules are called bricks, and any brick may be used as a 
function for the purposes of this scheme. There are at present almost 200 bricks in 
the library and not more than 63 may be used in one programme. The scope and 
flexibility of the scheme is therefore enormous, and this explains why so many DEUCE 
installations have used G.I.P. for more than half of their work.

G.I.P. is a programme pack which performs the following operations:

(i) It reads itself into tracks 235 to 255 of the drum.

(ii) It reads in a parameter card saying how many bricks are being used in the 
current programme.

(iii) It reads in the appropriate number of bricks, storing them from track 234 (in 
decreasing track number order.) As it reads and stores these bricks it notes 
where it has stored each one, so that it can subsequently bring it into the 
high speed store and obey it. It also makes a note of the first instruction 
in the brick.

(iv) The G.I.P., programme is then read in. This consists of a sequence of 'a,
b, c, r' codewords, where r refers to the rth brick in the sequence just read 
in, and a, b, and c are parameters to be provided to that brick, a, b, and c 
are usually drum addresses, in which case they should be small enough not to 
interfere with the bricks which are stored at the higher numbered tracks.

(v) G.I.P. then obeys the various codewords, starting with -the first and taking 
them in turn, except for jumps and discriminations. 17 values of r are set 
aside for jump, discrimination, modification and housekeeping instructions so 
that the order code is quite flexible. For such values of r, the numbers a, b, 
and c in the corresponding codewords usually refer to codeword numbers - this 
also being a feature of T.I.P. Discriminations thus take the form "Jump to 
codeword number b if the contents of codeword a are zero, otherwise jump to 
codeword number c". Such a codeword implies that one codeword (in this case 
number a) is being used as a counter rather than as a codeword to be obeyed. 
There are a variety of discriminations provided, as well as an unconditional 
jump. Others among these special values of r cater for automatic instruction 
modification (modify a, b, or c automatically after the codeword has been 
obeyed), and provide facilities for reading in new bricks and either writing 
them over bricks already in store and which are no longer needed, or obeying 
them directly in the high-speed store. The latter facility is particularly 
helpful when one is embarrassed for drum storage space and there are one or 
more bricks which are obeyed only once in a programme. These may as well be 
read and obeyed directly, once and for all, and so save the storage space 
which they would otherwise need on the drum.

To use G.I.P., therefore, a programmer does not have to possess any detailed 
knowledge of DEUCE programming, providing he can achieve his object by using 
existing bricks. He decides what bricks are required for a particular job, and 
having made the programme of codewords, the operator then provides DEUCE with G.I.P., 
followed by the various brides, followed by the codewords. The programmer will have 
had to count up how many of the 256 tracks on the drum will be needed by G.I.P.
(which accounts for 21) and all the bricks he needs for his particular operation.
The remaining tracks, which are always the lowest track numbers, are available for 
his data, and it will be necessary to know how the various bricks being used expect 
to find and store their data. Since virtually all bricks are built to accept and 
store data in a standard manner, the programmer’s problem is to apportion the data 
tracks correctly. There are, nevertheless, features which a DEUCE programmer may 
use, since any codeword, as an alternative to the standard a, b, c, r form, may be 
replaced by a normal DEUCE instruction. The interpretive programme will detect such 
an instruction (by the presence of a digit normally spare), and obey it as required. 
For instance, when one needs to read a single number into the machine, it might be 
easier to use the DEUCE instruction facility rather than to call a brick to perform 
such a trivial operation.

The programme provides generous testing facilities in the way expected of 
a conventional machine order code. There is the equivalent of a "stop key" which, 
when on, will cause the machine to stop on every G.I.P. instruction, and display 
it on lights before it is obeyed. Similarly, one can force G.I.P. to stop on a 
specific instruction on the keys - this facility being of use when an instruction



Shoot. No, 7.
i

is being examined each time it is obeyed in a loop. There are also convenient 
facilities for making the machine accept an instruction to replace that which it is 
about to obey, and to restore control or take a post-mortem in the case of a brick 
not behaving as expected.

The majority of the bricks available for use with G.I.F, are for linear- 
algebra operations, and as a result there has arisen a widespread belief that.the 
scheme is restricted to matrix operations. This is not so, although the scheme 
has been used extensively for linear-algebra and, in fact, many* problems which 
do not, at first sight, appear to be linear-algebra problems, have been solved 
using standard matrix bricks.

In the early days* the majority of problems arising came from the air
craft industry and were presented as linear-algebra operations. The standard 
operation to calculate -1 arid U3es brloks

to read, invert, multiply, transpose, subtract, and punch out matrices, and 
the complete G.I.P. instructions for performing this operation are:

Codeword a be r

0 - - 32 7 Read into track 32 onwards.

1 32 0 - 8 Prepare for inversion. These

2 - - - 9 Reduce. perform

• 3 - 106 11 Back substitute and store (Ag2 ) the

At track. 106 onwards . inversion.

4 - - - 12 Check store used for reduction.

5 - 146 7 Read A^ into track 146 onwards.

6 146 106 106; 1 Form App 'brack onwards.. .

7 106 146 0 1 Form A^2 A^2 A^ in track 0 onwards

8 - - 63 7 Read A^ into track 63 onwards.

9 63 0 126 4 Form A^ -A^g A^2 in track 126 onwards,

10 126 - - 6 Punch out.

11 - - 0 33 Return to codeword 0 to repeat with
other matrices. '

This programme will solve the problem for A^ of order less than or equal 

to 31 by 31 and for A^^ less than or equal to 41,by,31. It uses 12 bricks, 

for the multiplication brick has three sections and counts three fold, and 

the inversion brick counts five fold. The bricks used are

No, of Tracks,

1,2,3 Matrix Mult. 16

4,5 Subtract 9

6 Punch Matrix 3

7 Read Matrix. 3

8,9,10,11,12 5 sections to the invert matrix. 18
Total: 48 tracks.

The 48 tracks of bricks (and 21 tracks for G.I.P. itself) leaves 187 
tracks on the drum for the data, and die selection of the a, b, and c values 
in the above programme, have been chosen so as to make the best use of this 
available space. It will be noted that no reference is made at all to the size 
of the matrices. The scheme is so arranged that the dimensions of matrices are 
stored with the matrices themselves, and all bricks check for compatibility.
In this way the programmer merely has t< specify the first of the (consecutive)



Sheet No. Q.

drum tracks on which the matrix ia stored. A consequence of this is that if a G.I.P. 
programme is made to cope with a given maximum size of matrices (the restriction 
being storage space on the drum) then the same programme, without any alteration, 
may be used for any matrices whose size does not exceed the given maximum. In 
nearly all bricks the numbers are stored in block-floating form, that is with all 
elements to the same number of binary places, and with the largest element shifted 
up to fill the storage register. This method successfully combines the speed and 
storage economy of .fixed-point working with the flexibility and accuracy of floating
point operation.

More recently G.I.P. has been used for a wide range of other problems, not so 
obviously presented as linear-algebra. This has been facilitated by the case with 
which a G.I.P. programme can be constructed, and by the fact that even if all the 
required bricks do not exist, most will be available , and one or two special 
purpose bricks can be used. Por instance much statistical work is done on DEUCE 
by using G.I.P. - particularly in conjunction with a few special purpose statistical 
bricks. The Simplex and Transportation programmes also use G.I.P. - again with 
a few special bricks written for these purposes.

Since each function being carried out under the control of G.I.P., may be 
a complete DEUCE programme in itself, which will be obeyed at optimum speed and 
which may be operating on a large amount of data, the time spent in interpreting the 
codeword and fetching the brick may not be a significant amount. In fact it is about 
half a second. G.I.P. therefore shows up to its best advantage when it is required 
to operate upon large quantities of data in parallel, as typified by sizeable matrix 
operations. It is least efficient whenever the operations are trivial or only affect 
a small amount of data. It is to cope adequately with calculations on small amounts 
of data that T.I.P. and Alphacode were developed.

Particular features of standard bricks are the elaborate checks on arithmetic 
accuracy and the reliability of the operator or programmer. This standard of
checking was set with the first batch of bricks, and has been followed by later 
programmes. All matrices stored on the magnetic drum have the grand sum of all the 
elements stored with them and, whenever any bricks makes reference to the matrix, the 
grand sum is checked. This is important, not so much as an arithmetical check, but 
as a check that the programmer has not unwittingly overwritten the ’’tail end" of a 
matrix (which will in general be stored on a series of consecutive tracks). Similarly 
checks on the compatibility of matrices in, for instance, addition or multiplication 
are incorporated, and such checks have proved themselves very worth while - 
particularly in complicated operations where a programmer may mistake the 
dimensions of his matrices.

G.I.P. is therefore an ideal scheme for all calculations needing bulk 
calculations in parallel on relatively large amounts of data.

7. OTHER SCHEMES.

Other schemes, including Alphacode which is complementary to G.I.P., and 
T.I.P., in its facilities, are discussed in a comparison paper.



Sheet No. 9
APPENDIX.

Specification of three Hypothetical Machines as seen to the Programmer of one of three Interpretive Schemes.
G.I.P. T.I.P. Alphacode•

1. Form of instruction word. a, h, c, r a, b, c, r

(all three address plus function, r being function in G

x, = x_ function x,
12 5

.I.P. and T.I.P.)

2. No. of different kinds of A library of about 200 51 64

machine order. functions (p) is available 

from which the programmer.

5. Kinds of order.

selects those which he wants

All types - but usually for

dealing with bulk data as 
typified by matrix

operations.

•

A set of orders

suitable for scientific 

/engineering work.

A large set of orders

suitable for scientific

/engineering work.

(in all schemes new functions can be inserted in place of existing ones not required).

4. Housekeeping Instruction 16 special values of r set Automatic Instruction Modification and Simple Counting.

aside for discrim. Inst.

Mod. etc. •

5. Storage Capacity. Up to 7000 4196 2500

6. Knowledge of DEUCE. Some, particularly of drum. None. None.

7. Arithmetic. Usually Block Floating. Block floating. Fully floating.

8. No. of orders held in

machine at a time.

Usually 96 (more if 

necessary).

512 Up to 512

(More if necessary).



Sheet No. 10

G.I.P. T.I.P. Alphacode.

9» Interpretation time. second, per order. .7 second is average

interpretation and

execution time for

a full column.

.03 to .5 sec. depends

on the function.

10. Type of calculation Bulk calculations in Tabular Work, Long sequence of

suitable for. Parallel. calculation on a single

variable.

11. Special features. Flexibility - DEUCE

Instruction can be

inserted.

Pulling Pile of

instruction words.



ORTHODOX DEUCE PROGRAMMING



Existing Schemes using Written DEUCE Plow-Diagram



1.
Problem

2. Written 
Equations and

Operations

1
4" Written rjli 1

s Reverse Polish Punched
/ Notation Symbols

* Block Diagram 
of Method of 
Calculation

xl/
5. 7" Punched V.

17
Codewords 7

__
__

__
__

__
__

__
__

_ o\ • 16,G.I.P., T.I.P 

Alphacode or 
Easicode

» * Stored
Deuce

Flow-Diagram

k-

7.

8.

9.

.dL

10.
Test Method 

of Calculation

i
_____ \i/_

J9'
Test Logic of 

Codewords

19. Automatic
Instruction
Storage

Allocation

.Jl
20. Automatic 

Detailed 
Coding.

-X-
11.
Test Adequacy 
of Equations 
and Operations

<-

Solution

Existing Schemes not using Written DEUCE 

Plow-Diagram.

12.



A Development in Hand.


